研究生: |
解家瑜 Chia-yu Hsieh |
---|---|
論文名稱: |
DNA於自然對流中形變與運動之數值研究 Numerical study on DNA deformation and movement in natural convection |
指導教授: |
陳明志
Ming-jyh Chern |
口試委員: |
陳志強
Chi-keung Chan 胡孝光 Shiaw-guang Hu |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 機械工程系 Department of Mechanical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 脫氧核糖核酸 、自然對流式聚合酵素連鎖反應 、粗粒化方法 、數值研究 |
外文關鍵詞: | DNA, RB-PCR, Coarse-graining method, Numerical analysis |
相關次數: | 點閱:358 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脫氧核糖核酸 (DNA) 的物理性質於基因工程中非常重要, 當中又以 DNA 的伸展性影響最為
廣泛。 舉例而言, DNA於複製過程中必須被拉伸至平直的 B 結構以利重組。 另一方面, 聚合酵素連鎖反應 (PCR) 常用於複製 DNA, 近年來更提出以自然對流式聚合酵素連鎖反應 (RB-PCR)連續反覆的複製特定 DNA。 故本研究採用數值方法, 探討 DNA 於 RB-PCR 反應中所產生的拉伸行為。
本研究使用粗粒化方法 (coarse-graining method) 將連續的真實 DNA 轉換為可數值模
擬的片段小珠彈簧模型 (bead-spring model), 粗粒化後獲得的物理參數將用以決定各小珠所受之力量。 隨後, 搭配朗之萬方程式 (Langevin equation) 可計算出各小珠的速度與位移。 藉由小珠彈簧模型的變化探討 DNA 與周圍流場的交互作用。
本研究模擬之 DNA 於均勻流中之伸長量與 Perkins et al. [1]的實驗結果接近。 同時, 獲得DNA 伸長量與均勻流入口速度、DNA 完全拉伸長度之關係。 隨後, 模擬完全拉伸長度44.0μm 之 DNA 於微型 RB-PCR 反應器中所產生的運動與拉伸。 根據模擬結果可以分析 DNA於反應器中之伸長量、 旋轉角度、 小珠彈簧模型之各彈簧長度、 作用於各小珠之水作用力與小珠的速度大小。 上述資訊可用以預測 DNA 於 RB-PCR 複製反應中可能出現的行為。
The physical properties of deoxyribonucleic acid(DNA) is important in genetic engineering. In particular, the extensibility of the DNA chain is considered in many DNA applications. For example, the DNA chain must be extended to a straight B-form for the recombination in the DNA replication. In addition, the DNA replication can be implemented by polymerase chain reaction (PCR). Recently, Rayleigh-B′enard polymerase chain reaction (RB-PCR) which is driven by natural convection was proposed.
In order to investigate the behavior of the DNA chain in the RB-PCR, the numerical simulation of the DNA chain stretched at the RB-PCR reactor is performed. In order to predict behavior of the DNA chain by the numerical analysis, the coarse-graining method that transfers a continuous real DNA chain into a sectional bead-spring model is implemented. Meanwhile, the physical parameters of the coarse-grained DNA chain can be determined and then the force exerted on a bead of the bead-spring model is derived. The Langevin equation is used to calculate the movement of those beads.
From the numerical results, the extension of the DNA chain in a uniform flow is
predicted and compared with Perkins’et al. [1] experimental data. Also, the relationship among the inlet velocity of the uniform flow, fully extended length and the extension of the DNA chain are obtained. Furthermore, the simulation of the DNA chain of L=44.0 μm stretched at a micron RB-PCR reactor is performed. As a result, the extension and rotated angle of the DNA chain are provided. Also, the length of the spring, hydrodynamic drag exerted on the bead and the magnitude of the velocity of the bead of the bead-spring model can be investigated. Those information could be use to predict the behavior of the DNA chain during the replication at the RB-PCR reactor.
[1] Perkins, T. T., Smith, D. E., Larson, R. G. and Chu, S., 1995, Stretching of a single
tethered polymer in a uniform flow. Science 268, 83-87.
[2] Larson, R.G., Perkins, T.T., Smith, D.E. and Chu, S., 1997, Hydrodynamics of a
DNA molecule in a flow field. Physical Review E 55, 1794-1797.
[3] Jo, K., Chen, Y. L., de Pablo, J. J. and Schwartz, D. C., 2009, Elongation and
migration of single DNA molecules in microchannels using oscillatory shear flows.
The Royal Society of Chemistry 9, 2348-2355.
[4] Shaqfeh, E. S. G., 2005, The dynamics of single-molecule DNA in flow. Journal of
Non-Newtonian Fluid Mechanics 130, 1-28.
[5] Smith, S. B., Finze, L. and Bustamante, C., 1992, Direct mechanical measurements
of the elasticity of single molecules by using magnetic beads. Science 258, 1122-1126.
[6] Bustamante, C., Marko, J. F., Siggia, E. D. and Smith, S., 1994, Entropic elasticity
of λ-phage DNA. Science 265, 1599-1600.
[7] Vologodskii, A., 1994, DNA extension under the action of an external force. Macro-
molecules 27, 5623-5625.
[8] Mohan, A. and Doyle, P. S., 2007, Unraveling of a tethered polymer chain in uniform
solvent flow. Macromolecules 40, 4301-4312.
[9] Yang, Z., Chen, C. P., Chen, Z. J. and Chieng, C. C., 2008, Multiscale modeling of
protein stretching in nanofluidic flows. MicroNano 08, 1-6.
[10] Cheon, M., Chang, I., Koplik, J. and Banavar, J. R., 2002, Chain molecule deforma-
tion in a uniform flow - a computer experiment. Europhysics Letters 58, 215-221.
[11] Kuhn, W., 1934,Über die gestalt fadenförmiger moleküle in lösungen. Kolloid
Zeitschrift 68, 2.
[12] Doi, M. and Edwards, S. F., 1986, The Theory of Polymer Dynamics, Oxford Uni-
versity Press, New York, USA.
[13] Bird, R. B., Curtiss, C. F., Armstrong, R. C. and Hassager, O., 1996, Dynamics of
Polymeric Liquids, 2nd ed, Vol. 2., Wiley, New York, USA.
[14] Larson, R. G., 2004, Principles for coarse-graining polymer molecules in simulations
of polymer fluid mechanics, Molecular Physics 102, 341-351.
[15] Braun, D., Goddard, N. L. and Libchaber, A., 2003, Exponential DNA replication
by laminar convection. Physical Review Letters 91, 158103.
[16] Flory, P.J., 1953, Principles of Polymer Chemistry, Cornell University Press, New
York, USA.
[17] Hays, J. B., Magar, M. E. and Zimm, B. H., 1969, Persistence length of DNA.
Biopolymers 8, 531-536.
[18] Günther, K., Mertig, M. and Seidel, R., 2010, Mechanical and structural properties
of YOYO-1 complexed DNA. Nucleic Acids Research 38, 6526-6532.
[19] Lucien, G. C., 1965, The molecular weight of lambda DNA. Virlogy 25, 226-236.
[20] Weigle, J. and Meselson, M., 1959, Density alterations associated with transducing
ability in the bacteriophage lambda. Journal of Molecular Biology 1, 379-386.
[21] Kaiser, A. D., 1966, On the internal structure of bacteriophage lambda. The Journal
of General Physiology, 49, 171-178.
[22] Wu, W. C. and Chang, K. C., 2005, Study of three dimensional natural convection
in a cube near critical Ra value. Transaction of the Aeronautical and Astronautical
Society of the Republic of China 37, 171-180.
[23] Peskin, C. S., 2002, The immersed boundary method. Acta Numerica 11, 479-517.
[24] C ﹐engel, Y. A. and Cimbala, J. M., 2006, Fluid Mechanics, McGraw-Hill, New York,
USA.