簡易檢索 / 詳目顯示

研究生: 段文宏善
Doan - Van Hong Thien
論文名稱: 幾丁聚醣電噴射奈米粒子與電紡奈米纖維之製備與應用
PREPARATION AND APPLICATION OF CHITOSAN ELECTROSPRAYED NANOPARTICLES AND ELECTROSPUN NANOFIBERS
指導教授: 何明樺
Ming-Hua Ho
口試委員: 朱義旭
Yi-Hsu Ju
高震宇
Chen-Yu Kao
董崇民
Trong-Ming Don
謝學真
Hsyue-Jen Hsieh
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 157
中文關鍵詞: 幾丁聚醣
外文關鍵詞: Chitosan, electrospraying, electrospinning
相關次數: 點閱:230下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

幾丁聚醣(chitosan, CS) 奈米粒子是利用電噴灑法所製作。但CS分子 量對於電灑上的影響仍須被探討,CS的分子量對CS粒子的尺寸與型態的影響很大。除此之外,在電灑的過程中,也同樣探究了幾丁聚醣濃度、電場、醋酸的濃度及溶液進料的速率所帶來的影響。CS電灑奈米粒子可應用於藥物輸送及金屬離子的吸附上。
為了探討CS電灑奈米粒子在藥物輸送上所具有的潛力,先以吲哚美辛(indomethacin, ID)作為標準藥物,其中包埋的效率、承載能力及釋放曲線已被測定過。利 用電灑方法所製成的球狀CS-ID奈米粒子平均粒徑為340 nm,並且根據CS-ID奈米粒子的 zeta 電位顯示該粒子在懸浮液中相當穩定。在ID的包埋效率上,電灑的方法 所製成的CS粒子比起其他方法製成的CS粒子效率較好,其中利用電灑法製CS粒子中,150-KDa CS對ID之包埋效率及負載能力比310-KDa CS來得高。而 藥物釋放的曲線所顯示的是釋放分為兩個階段,並在第二個階段得到較長時間的藥物輸送。綜合以上結果,此研究最佳化了CS奈米粒子的製作方法及表現出CS電灑奈米粒子是為有潛力的藥物載體。
CS 粒子同樣可應用於去除水溶液中的二價銅離子。金屬離子的去除與 二價銅離子溶液的pH值、吸附劑的量及接觸時間有極大的關聯。因此在去除水溶液中二價銅離子實驗之中,將會測定pH值、吸附劑的量及接觸時間所帶來的影響。利用glutaraldehyde與CS電灑奈米粒子交聯可增強電灑CS奈米粒子在酸性水溶液中的穩定性。從等溫的模組中可分析得到吸附達穩態時的數據,吸附二價銅離子最大的吸附能力為192.3 mg/g。為了回收吸附劑,使用 鹽酸及EDTA來脫附二價銅離子。
幾丁聚醣(chitosan, CS)奈米纖維是以電紡技術所製備的。CS溶液與 腔體的溫度會大幅影響CS電紡奈米纖維的型態。此外,在此研究中也同時測定施加電壓、CS溶液濃度、溶劑、共溶劑及注射針尖到收集板之間距離所帶來的影響。而為了能得到均相的CS奈米纖維,需最佳化電紡製備的參數。製備為的CS奈米纖維使用SEM來檢視型態。另外,利用氫氧基磷灰石(Hydroxyapatite, HA)修飾CS電紡奈米纖維的表面型態,有兩種方法,一是浸泡模擬人 體體液(SBF),二是濕式合成法。
在浸泡SBF程序之中,CS電紡奈米纖維會在SBF中以不同的時間培養,以生成HA層在CS奈米纖維表面上。之後會以SEM、EDS、FTIR及XRD測定CS電紡奈米纖維表面HA的生成及其型態。由SEM的圖像可得知,CS奈米纖維上所的HA為均勻生成於其上。根據EDS及XRD的結果指出,在奈米纖維上需經六天SBF的培養使HA生成,並且HA的鈣磷比與自然骨相似。接下來為了檢測CS/HA奈米纖維的生物相容性,將大鼠骨瘤細胞(UMR-106)培養CS/HA奈米纖維支架上。
與CS奈米纖維、CS薄膜及CS/HA薄膜相比,CS/HA奈米纖維在細胞的增生及早期的分化有較好的表現。使用複合材料的奈米纖維會增加生物相容性及細胞的親和力。總而言之,CS/HA電紡支架在骨組織工程中是相當具潛力的材料。
另外在濕式合成法中,CS奈米纖維會先與GA交聯,再與Ca(NO3)2 和 (NH4)2NO3產生礦化反應。在製備CS/HA電紡奈米纖維中,反應會經過三個循環,以最佳化製備的時間。濕式合成法中礦化的時間約為三個小時,而使用SBF處理的礦化程序最少需144個小時 (六天)。同樣以XRD、SEM、FTIR 及EDS測定HA的生成,結果發現合成的HA相當接近自然骨。與CS奈米纖維相比,CS/HA奈米纖維對UMR細胞的貼附與延展較好,且電紡CS/HA奈米纖維支架相當適合骨細胞。


Chitosan (CS) nanoparticles were fabricated by an electrospraying method. The effects of CS molecular weight on electrospraying were investigated. The size and morphology of CS particles were strongly influenced by CS molecular weight. Moreover, CS concentration, electrical field, acetic acid concentration, and solution flow rate in the electrospraying process were also studied. The electrosprayed CS nanoparticles were applied for drug delivery and metal-ion adsorption.
To evaluate the potential of electrosprayed CS nanoparticles in drug delivery, indomethacin (ID) was used as a model drug, where the encapsulation efficiency, the loading capacity, and the releasing profiles were identified. The spherical CS-ID nanoparticles were fabricated by the electrospraying technique with an average diameter of 340 nm. Zeta potential of the ID-CS particles indicated that the particles were stable in suspension. The encapsulation efficiency (EE) and loading capacity (LC) of ID were higher for 150-kDa CS than for 310-kDa CS. The EE of ID in electrosprayed CS particles was higher than that in particles prepared by other methods. The release profiles revealed that there were two stages for releasing and the long-term delivery could be obtained in the second stage. In summary, this research optimized the electrospraying process for the fabrication of CS nanoparticles and demonstrated the potential of electrosprayed CS nanoparticles as a drug carrier.
The CS nanoparticles were also applied for the removal of Cu(II) ions from a bath aqueous solution. The electrosprayed CS nanoparticles were cross-linked by glutaraldehyde to enhance the stability in an acidic medium. In the removal process, the effects of pH, adsorbent amounts, and contact time were also studied. The metal removal strongly depended on the pH of the Cu (II) solution, the contact time, and the adsorbent amounts. The equilibrium data were analyzed by an isotherm model. The maximum adsorption capacity for Cu(II) ions was 192.3 mg/g. Hydrochloric acid (HCl) and ethylenediaminetetraacetic acid (EDTA) with various concentrations were used for the desorption of Cu(II) ions to recycle the adsorbent.
Chitosan (CS) nanofibers were prepared by an electrospinning technique. The main parameters of the electrospinning process were optimized to obtained homogeneous CS nanofibers. The temperature of CS solutions as well as the chamber strongly affected on the morphology of electrospun CS nanofibers. Moreover, the effects of applied voltage, CS concentration, solvent, co-solvent, CS molecular weight, and tip-to-collector distance were all investigated in this research. The morphology of electrospun CS nanofibers was observed by SEM. The surface of the electrospun CS nanofibers were modified the surface by hydroxyapatite (HA), which was produced by two methods: in situ precipitation in a stimulated body fluid (SBF) and a wet chemical process.
In SBF process, CS nanofibers were incubated in SBF for various times to form HA layers on the surface of CS nanofibers. The CS/HA nanofibers were characterized by SEM, EDS, FTIR, and XRD for confirming the HA formation as well as checking the morphology of the nanofibrous scaffolds. From the SEM image, the distribution of HA on the CS nanofibers was homogeneous. The results from EDS and XRD indicated that HA was formed on the nanofibrous surfaces after 6-day incubation in the SBF with a Ca/P ratio close to that of natural bones. To identify biocompatibility, CS/HA scaffolds were applied for the culture of rat osteosarcoma cells (UMR–106). Cell proliferation and early differentiation on the CS/HA nanofibers were better than those on the CS nanofibers, the CS/HA film, and the CS films. Biocompatibility and cell affinity were enhanced by using the composite nanofibers. Conclusively, the electrospun CS/HA scaffolds would be a potential material in bone tissue engineering.
In the wet chemical process, the CS nanofibers were cross-linked by GA before mineralization by the reaction of Ca(NO3)2 and (NH4)2NO3. The time of reaction with three cycles (C3) was optimized for the preparation of electrospun CS/HA nanofibers. The time of mineralization by using wet process was about 3 hours. Meanwhile, the time of mineralization by using SBF treatment was at least 144 hours (6 days). HA XRD, SEM, FTIR, EDS analyses confirmed the formation of HA, which was similar to HA found in nature bone. The attachment and spreading of UMR cells on CS/HA nanofibers were better than those on CS nanofibers. The scaffolds of electrospun CS/HA nanofiber were suitable for bone cells.

ABSTRACT I 摘要 IV ACKNOWLEDGEMENTS VI CONTENTS VII LIST OF ABBREVIATION XI LIST OF FIGURES XIII LIST OF TABLES XVII CHAPTER 1. INTRODUCTION 1 1.1. Chitosan 1 1.2. Electrospraying 1 1.3. Electrospinning 3 1.4. Thesis objectives 3 CHAPTER 2. LITERATURE REVIEW 5 2.1. Chitosan 5 2.1.1 Resources, structure, and properties of CS 5 2.1.2 Characterization of CS 6 2.1.2.1 Degree of deacetylation of CS 6 2.1.2.2 Solubility of CS 7 2.1.2.3 Degradation of CS & CS molecular weight 7 2.1.2.4 Cross-linking of CS 8 2.1.3 Applications of CS 9 2.1.3.1 CS nanoparticles for drug delivery 9 2.1.3.2 CS for metal ions adsorption 10 2.1.3.3 Bone tissue engineering 12 2.1.3.4 CS/HA for bone tissue engineering 13 2.2. Electrospraying of CS 16 2.2.1. Electrospraying setup and effect of parameters 16 2.2.2. Applications of electrosprayed polymeric particles 18 2.2.3. Electrospraying and applications 18 2.3. Electrospinning of CS 20 2.3.1. Mechanism of electrospinning 20 2.3.2. Electrospinning of CS 22 Electrospinning of CS and its applications 24 CHAPTER 3. MATERIALS AND EXPERIMENTAL PROCEDUCES 27 3.1. Materials 27 3.2. Experimental procedures 28 3.2.1. CS degradation and determination of molecular weight (Mv) 28 3.2.2. Preparation of cross-linked CS nanoparticles 29 3.2.3. Characteristic of CS particles 29 3.2.4. Encapsulation of indomethacin and CS nanoparticles 30 Characterization of CS-ID nanoparticles 30 Determination of encapsulation efficiency and loading capacity of ID 31 In vitro ID release 31 3.2.5. Adsorption experiments 31 Adsorption isotherms 32 Desorption experiments 32 3.2.6. Preparation of CS nanofibers 33 3.2.7. Preparation of CS/HA nanofibers 33 Neutralization of CS scaffolds 33 Cross-linking CS nanofibers 33 Incubation of CS nanofibers in SBF 34 Mineralization of CS nanofibers via a wet chemical process 34 Characterization of CS/HA nanofibers 35 3.2.8. Cell behavior on CS/HA nanofibers 36 Cell culture and cell adhesion 36 MTT assay 36 ALP assay 37 Statistical analysis 37 CHAPTER 4. ELECTROSPRAYING OF CS 38 4.1. Preparation of electrosprayed CS nanoparticles 38 4.2. Results of electrospraying 39 4.2.1 Effects of CS concentration and Mv 39 4.2.2 Effects of acetic acid concentration 42 4.2.3 Effects of flow rate 44 4.2.4 Effects of electrical field 45 4.2.5 Optimal parameters for electrospraying of CS 46 CHAPTER 5. ENCAPSULATION OF INDOMETACIN AND COPPER (II) IONS ADSORPTION BY USING CS NANOPARTICLES 49 5.1. Encapsulation and release of ID 49 5.1.1. Preparation of electrosprayed CS/ID nanoparticles 49 5.1.2. Characterization of CS-ID nanoparticles 50 5.1.3. Drug encapsulation & in vitro release 53 5.1.4. Summary 54 5.2. Copper (II) ions adsorption 55 5.2.1. Electrosprayed CS nanoparticles for Cu (II) adsorption 55 5.2.2. CS nanoparticles for absorpting Cu(II) ions 56 CHAPTER 6. ELECTROSPINNING OF CS 64 6.1. Fabrication of electrospun CS nanofibers 64 6.2. Optimization of electrospun CS 65 6.2.1. Effects of solvent 65 6.2.2. Effects of CS concentration 69 6.2.3. Effects of applied voltage 70 6.2.4. Effects of tip-to-collector distance 71 6.2.5. Effects of flow rate 73 6.2.6. Effects of solution temperature 74 6.2.7. Effects of chamber temperature 75 6.2.8. Optimal conditions of CS electrospinning 76 CHAPTER 7. PREPARATION OF CS/HA NANOFIBERS BY SBF TREATEMT 78 7.1. Electrospun CS nanofibers modified HA by SBF treatment 78 7.2. CS/HA nanofibers: characterization and applications 80 7.2.1. Characterization of CS nanofibers 80 7.2.2. Incubation time of CS nanofibers in 1.5xSBF and characterization of CS/HA nanofibers 80 7.2.3. Cell viability 84 7.2.4. Cell differentiation 85 7.2.5. Summary of cells behaviors on CS/HA fibers 86 CHAPTER 8. PREPARATION OF ELECTROSPUN CS/HA NANOFIBERS VIA A WET CHEMICAL REACTION 87 8.1. Preparation of CS/HA scaffolds via a wet chemical reaction 87 8.2. Characterizations and applications of CS/HA nanofibers 88 8.2.1. Mineralization of electrospun CS nanofibers 88 8.2.2. SEM images of electrospun CS/HA nanofibers 88 8.2.3. XRD patterns of electrospun CS/HA nanofibers 89 8.2.4. FTIR spectra of electrospun CS/HA nanofibers 91 8.2.5. Ca/P ratio of electrospun CS/HA nanofibers of C3 91 8.2.6. Cell attachment 92 8.2.7. Summary 94 CHAPTER 9. CONCLUSIONS AND FUTURE WORK 95 References 97 APPENDIX A: Determination of CS molecular weight 132 APPENDIX B: Determination of CS particle size by the image J software 133 APPENDIX C: MTT assay 134 APPENDIX D: Protein assay 135 APPENDIX E: ALP assay 136 Autobiography XIX

1 A. Alishahi and M. Aider, Applications of chitosan in the seafood industry and aquaculture: A review. Food and Bioprocess Technology. 5, 817 (2012)
2 M. N. V. R. Kumar, R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa and A. J. Domb, Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews. 104, 6017 (2004)
3 K. V. Harish Prashanth and R. N. Tharanathan, Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends in Food Science and Technology. 18, 117 (2007)
4 L. Illum, Chitosan and its use as a pharmaceutical excipient. Pharmaceutical Research. 15, 1326 (1998)
5 C. K. S. Pillai, W. Paul and C. P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science. 34, 641 (2009)
6 X. Geng, O. H. Kwon and J. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials. 26, 5427 (2005)
7 K. Ohkawa, D. Cha, H. Kim, A. Nishida and H. Yamamoto, Electrospinning of chitosan. Macromolecular Rapid Communications. 25, 1600 (2004)
8 K. Ohkawa, K. I. Minato, G. Kumagai, S. Hayashi and H. Yamamoto, Chitosan nanofiber. Biomacromolecules. 7, 3291 (2006)
9 S.-E. Park, J.-Y. Hwang, K. Kim, B. Jung, W. Kim and J. Hwang, Spray deposition of electrohydrodynamically atomized polymer mixture for active layer fabrication in organic photovoltaics. Solar Energy Materials and Solar Cells. 95, 352 (2011)
10 A. Jaworek, Electrostatic micro- and nanoencapsulation and electroemulsification: A brief review. Journal of Microencapsulation. 25, 443 (2008)
11 J. Zeleny, The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review A. 3, 69 (1914)
12 D. Li and Y. Xia, Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials. 16, 1151 (2004)
13 A. Jaworek and A. T. Sobczyk, Electrospraying route to nanotechnology: An overview. Journal of Electrostatics. 66, 197 (2008)
14 Y. Q. Wu and R. L. Clark, Controllable porous polymer particles generated by electrospraying. Journal of Colloid and Interface Science. 310, 529 (2007)
15 J. P. Rao and K. E. Geckeler, Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science. 36, 887 (2011)
16 A. Formalas, Process and apparatus for preparing artificial threads. US 1975504. (1934)
17 S. Patel, K. Kurpinski, R. Quigley, H. Gao, B. S. Hsiao, M.-M. Poo and S. Li, Bioactive nanofibers:  Synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Letters. 7, 2122 (2007)
18 S. Ramakrishna, K. Fujihara, W.-E. Teo, T. Yong, Z. Ma and R. Ramaseshan, Electrospun nanofibers: solving global issues. Materials Today. 9, 40 (2006)
19 A. Greiner and J. H. Wendorff, Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition. 46, 5670 (2007)
20 V. Thavasi, G. Singh and S. Ramakrishna, Electrospun nanofibers in energy and environmental applications. Energy & Environmental Science. 1, 205 (2008)
21 Z. Dong, S. J. Kennedy and Y. Wu, Electrospinning materials for energy-related applications and devices. Journal of Power Sources. 196, 4886 (2011)
22 T. J. Sill and H. A. von Recum, Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials. 29, 1989 (2008)
23 F. J. Pavinatto, L. Caseli and O. N. Oliveira, Chitosan in nanostructured thin films. Biomacromolecules. 11, 1897 (2010)
24 J. R. Trinkle, K. O. Hwang and W. Fan, Chitosan production. US 7488812 B2. (2009)
25 O. Felt, P. Buri and R. Gurny, Chitosan: A unique polysaccharide for drug delivery. Drug Development and Industrial Pharmacy. 24, 979 (1998)
26 G. Crini and P. M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science (Oxford). 33, 399 (2008)
27 I. Aranaz, M. Mengibar, R. Harris, I. Panos, B. Miralles, N. Acosta, G. Galed and A. Heras, Functional characterization of chitin and chitosan. Current Chemical Biology. 3, 203 (2009)
28 S. Şenel and S. J. McClure, Potential applications of chitosan in veterinary medicine. Advanced Drug Delivery Reviews. 56, 1467 (2004)
29 M. Dash, F. Chiellini, R. M. Ottenbrite and E. Chiellini, Chitosan-A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science. 36, 981 (2011)
30 V. K. Mourya and N. N. Inamdar, Chitosan-modifications and applications: Opportunities galore. Reactive and Functional Polymers. 68, 1013 (2008)
31 M. Rinaudo, Chitin and chitosan: Properties and applications. Progress in Polymer Science. 31, 603 (2006)
32 C. Shi, Y. Zhu, X. Ran, M. Wang, Y. Su and T. Cheng, Therapeutic potential of chitosan and its derivatives in regenerative medicine. Journal of Surgical Research. 133, 185 (2006)
33 F. Khan, R. S. Tare, R. O. C. Oreffo and M. Bradley, Versatile biocompatible polymer hydrogels: Scaffolds for cell growth. Angewandte Chemie - International Edition. 48, 978 (2009)
34 J. F. Mano, G. A. Silva, H. S. Azevedo, P. B. Malafaya, R. A. Sousa, S. S. Silva, L. F. Boesel, J. M. Oliveira, T. C. Santos, A. P. Marques, N. M. Neves and R. L. Reis, Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface. 4, 999 (2007)
35 W. S. Wan Ngah, C. S. Endud and R. Mayanar, Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive and Functional Polymers. 50, 181 (2002)
36 I. Y. Kim, S. J. Seo, H. S. Moon, M. K. Yoo, I. Y. Park, B. C. Kim and C. S. Cho, Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances. 26, 1 (2008)
37 W. Kaminski, E. Tomczak and K. Jaros, Interactions of metal ions sorbed on chitosan beads. Desalination. 218, 281 (2008)
38 E. Guibal, Interactions of metal ions with chitosan-based sorbents: A review. Separation and Purification Technology. 38, 43 (2004)
39 G. Qun and W. Ajun, Effects of molecular weight, degree of acetylation and ionic strength on surface tension of chitosan in dilute solution. Carbohydrate Polymers. 64, 29 (2006)
40 P. Sorlier, A. Denuziere, C. Viton and A. Domard, Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules. 2, 765 (2001)
41 P. Sorlier, C. Viton and A. Domard, Relation between solution properties and degree of acetylation of chitosan: Role of aging. Biomacromolecules. 3, 1336 (2002)
42 C. Chatelet, O. Damour and A. Domard, Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 22, 261 (2001)
43 M. R. Kasaai, Various methods for determination of the degree of N-acetylation of chitin and chitosan: A review. Journal of Agricultural and Food Chemistry. 57, 1667 (2009)
44 S. Beil, A. Schamberger, W. Naumann, S. Machill and K.-H. van Pee, Determination of the degree of N-acetylation (DA) of chitin and chitosan in the presence of water by first derivative ATR FTIR spectroscopy. Carbohydrate Polymers. 87, 117 (2012)
45 S. C. Tan, E. Khor, T. K. Tan and S. M. Wong, The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination. Talanta. 45, 713 (1998)
46 R. A. A. Muzzarelli and R. Rocchetti, Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydrate Polymers. 5, 461 (1985)
47 T. Wu and S. Zivanovic, Determination of the degree of acetylation (DA) of chitin and chitosan by an improved first derivative UV method. Carbohydrate Polymers. 73, 248 (2008)
48 M. Lavertu, Z. Xia, A. N. Serreqi, M. Berrada, A. Rodrigues, D. Wang, M. D. Buschmann and A. Gupta, A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis. 32, 1149 (2003)
49 Y. Zhang, C. Xue, Y. Xue, R. Gao and X. Zhang, Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydrate Research. 340, 1914 (2005)
50 A. Tolaimate, J. Desbrieres, M. Rhazi, A. Alagui, M. Vincendon and P. Vottero, On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer. 41, 2463 (2000)
51 X. Jiang, L. Chen and W. Zhong, A new linear potentiometric titration method for the determination of deacetylation degree of chitosan. Carbohydrate Polymers. 54, 457 (2003)
52 S. Prochazkova, K. M. Varum and K. Ostgaard, Quantitative determination of chitosans by ninhydrin. Carbohydrate Polymers. 38, 115 (1999)
53 H. Sato, S.-i. Mizutani, S. Tsuge, H. Ohtani, K. Aoi, A. Takasu, M. Okada, S. Kobayashi, T. Kiyosada and S.-i. Shoda, Determination of the degree of acetylation of chitin/chitosan by pyrolysis-gas chromatography in the presence of oxalic acid. Analytical Chemistry. 70, 7 (1998)
54 L. S. Guinesi and E. T. G. Cavalheiro, The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochimica Acta. 444, 128 (2006)
55 R. Jayakumar, M. Prabaharan, S. V. Nair and H. Tamura, Novel chitin and chitosan nanofibers in biomedical applications. Biotechnology Advances. 28, 142 (2010)
56 R. C. Capozza, Solution of poly(N-acetyl-D-glucosamine). US 3989535. (1976)
57 J. D. Schiffman, L. A. Stulga and C. L. Schauer, Chitin and Chitosan: Transformations due to the electrospinning process. Polymer Engineering and Science. 49, 1918 (2009)
58 W. Yue, P. Yao and Y. Wei, Influence of ultraviolet-irradiated oxygen on depolymerization of chitosan. Polymer Degradation and Stability. 94, 851 (2009)
59 J. Liu and W. Xia, Purification and characterization of a bifunctional enzyme with chitosanase and cellulase activity from commercial cellulase. Biochemical Engineering Journal. 30, 82 (2006)
60 G. Dhillon, S. Brar, J. Valero and M. Verma, Bioproduction of hydrolytic enzymes using apple pomace waste by A. niger: applications in biocontrol formulations and hydrolysis of chitin/chitosan. Bioprocess and Biosystems Engineering. 34, 1017 (2011)
61 Q. Cai, Z. Gu, Y. Chen, W. Han, T. Fu, H. Song and F. Li, Degradation of chitosan by an electrochemical process. Carbohydrate Polymers. 79, 783 (2010)
62 S. Popa-Nita, J.-M. Lucas, C. Ladaviere, L. David and A. Domard, Mechanisms involved during the ultrasonically induced depolymerization of chitosan: characterization and control. Biomacromolecules. 10, 1203 (2009)
63 R. J. Nordtveit, K. M. Varum and O. Smidsrod, Degradation of partially N-acetylated chitosans with hen egg white and human lysozyme. Carbohydrate Polymers. 29, 163 (1996)
64 C. Q. Qin, Y. M. Du and L. Xiao, Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan. Polymer Degradation and Stability. 76, 211 (2002)
65 B. Kang, Y.-d. Dai, H.-q. Zhang and D. Chen, Synergetic degradation of chitosan with gamma radiation and hydrogen peroxide. Polymer Degradation and Stability. 92, 359 (2007)
66 S.-M. Wang, Q.-Z. Huang and Q.-S. Wang, Study on the synergetic degradation of chitosan with ultraviolet light and hydrogen peroxide. Carbohydrate Research. 340, 1143 (2005)
67 F. Tian, Y. Liu, K. Hu and B. Zhao, The depolymerization mechanism of chitosan by hydrogen peroxide. Journal of Materials Science. 38, 4709 (2003)
68 G. G. Allan and M. Peyron, Molecular weight manipulation of chitosan I: kinetics of depolymerization by nitrous acid. Carbohydrate Research. 277, 257 (1995)
69 S. Mao, X. Shuai, F. Unger, M. Simon, D. Bi and T. Kissel, The depolymerization of chitosan: effects on physicochemical and biological properties. International Journal of Pharmaceutics. 281, 45 (2004)
70 K. A. Janes, M. P. Fresneau, A. Marazuela, A. Fabra and M. J. Alonso, Chitosan nanoparticles as delivery systems for doxorubicin. Journal of Controlled Release. 73, 255 (2001)
71 J. D. Schiffman and C. L. Schauer, Cross-Linking Chitosan Nanofibers. Biomacromolecules. 8, 594 (2006)
72 Q. Yang, F. Dou, B. Liang and Q. Shen, Studies of cross-linking reaction on chitosan fiber with glyoxal. Carbohydrate Polymers. 59, 205 (2005)
73 Z. Yang, L. Zhuang and G. Tan, Preparation and adsorption behavior for metal of chitosan crosslinked by Dihydroxy azacrown ether. Journal of Applied Polymer Science. 85, 530 (2002)
74 A. Sionkowska, Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Progress in Polymer Science. 36, 1254 (2011)
75 D. R. Bhumkar and V. B. Pokharkar, Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS PharmSciTech [electronic resource]. 7, (2006)
76 Z. Liu, Y. Jiao, Y. Wang, C. Zhou and Z. Zhang, Polysaccharides-based nanoparticles as drug delivery systems. Advanced Drug Delivery Reviews. 60, 1650 (2008)
77 K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni and W. E. Rudzinski, Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release. 70, 1 (2001)
78 G. A. Hughes, Nanostructure-mediated drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine. 1, 22 (2005)
79 T. M. Fahmy, P. M. Fong, A. Goyal and W. M. Saltzman, Targeted for drug delivery. Materials Today. 8, 18 (2005)
80 K. E. Uhrich, S. M. Cannizzaro, R. S. Langer and K. M. Shakesheff, Polymeric systems for controlled drug release. Chemical Reviews. 99, 3181 (1999)
81 Y. Xu and Y. Du, Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics. 250, 215 (2003)
82 Q. Gan and T. Wang, Chitosan nanoparticle as protein delivery carrier—Systematic examination of fabrication conditions for efficient loading and release. Colloids and Surfaces B: Biointerfaces. 59, 24 (2007)
83 K. A. Janes and M. J. Alonso, Depolymerized chitosan nanoparticles for protein delivery: Preparation and characterization. Journal of Applied Polymer Science. 88, 2769 (2003)
84 T. Kiang, J. Wen, H. W. Lim and K. W. Leong, The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials. 25, 5293 (2004)
85 W. Ajun, S. Yan, G. Li and L. Huili, Preparation of aspirin and probucol in combination loaded chitosan nanoparticles and in vitro release study. Carbohydrate Polymers. 75, 566 (2009)
86 K. C. Gupta and M. N. V. Ravi Kumar, Drug release behavior of beads and microgranules of chitosan. Biomaterials. 21, 1115 (2000)
87 S. Nsereko and M. Amiji, Localized delivery of paclitaxel in solid tumors from biodegradable chitin microparticle formulations. Biomaterials. 23, 2723 (2002)
88 A. Dev, N. S. Binulal, A. Anitha, S. V. Nair, T. Furuike, H. Tamura and R. Jayakumar, Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydrate Polymers. 80, 833 (2010)
89 Y. Aktas, K. Andrieux, M. J. Alonso, P. Calvo, R. N. Gursoy, P. Couvreur and Y. Capan, Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor. International Journal of Pharmaceutics. 298, 378 (2005)
90 H. C. Yang and M. H. Hon, The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchemical Journal. 92, 87 (2009)
91 A. K. Anal, W. F. Stevens and C. Remunan-Lopez, Ionotropic cross-linked chitosan microspheres for controlled release of ampicillin. International Journal of Pharmaceutics. 312, 166 (2006)
92 R. Bassi, S. O. Prasher and B. K. Simpson, Removal of selected metal ions from aqueous solutions using chitosan flakes. Separation Science and Technology. 35, 547 (2000)
93 A. Kamari and W. S. W. Ngah, Isotherm, kinetic and thermodynamic studies of lead and copper uptake by H2SO4 modified chitosan. Colloids and Surfaces B: Biointerfaces. 73, 257 (2009)
94 W. S. W. Ngah and S. Fatinathan, Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chemical Engineering Journal. 143, 62 (2008)
95 W. S. Wan Ngah, A. Kamari and Y. J. Koay, Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. International Journal of Biological Macromolecules. 34, 155 (2004)
96 H. L. Vasconcelos, V. T. Favere, N. S. Goncalves and M. C. M. Laranjeira, Chitosan modified with reactive blue 2 dye on adsorption equilibrium of Cu(II) and Ni(II) ions. Reactive and Functional Polymers. 67, 1052 (2007)
97 H. L. Vasconcelos, E. Guibal, R. Laus, L. Vitali and V. T. FA!vere, Competitive adsorption of Cu(II) and Cd(II) ions on spray-dried chitosan loaded with Reactive Orange 16. Materials Science and Engineering C. 29, 613 (2009)
98 L. Vitali, M. C. M. Laranjeira, N. S. Goncalves and V. T. Favere, Spray-dried chitosan microspheres containing 8-hydroxyquinoline -5 sulphonic acid as a new adsorbent for Cd(II) and Zn(II) ions. International Journal of Biological Macromolecules. 42, 152 (2008)
99 V. M. Boddu, K. Abburi, J. L. Talbott and E. D. Smith, Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environmental Science and Technology. 37, 4449 (2003)
100 Y.-T. Zhou, H.-L. Nie, C. Branford-White, Z.-Y. He and L.-M. Zhu, Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with [alpha]-ketoglutaric acid. Journal of Colloid and Interface Science. 330, 29 (2009)
101 S. Kalyani, J. A. Priya, P. S. Rao and A. Krishnaiah, Removal of copper and nickel from aqueous solutions using chitosan coated on perlite as biosorbent. Separation Science and Technology. 40, 1483 (2005)
102 M. W. Wan, I. G. Petrisor, H. T. Lai, D. Kim and T. F. Yen, Copper adsorption through chitosan immobilized on sand to demonstrate the feasibility for in situ soil decontamination. Carbohydrate Polymers. 55, 249 (2004)
103 S. Haider and S. Y. Park, Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. Journal of Membrane Science. 90 (2009)
104 J. W. Wang and Y. M. Kuo, Preparation and adsorption properties of chitosan-poly(acrylic acid) nanoparticles for the removal of nickel ions. Journal of Applied Polymer Science. 107, 2333 (2008)
105 N. Li and R. Bai, Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Separation and Purification Technology. 42, 237 (2005)
106 R. Langer and J. P. Vacanti, Tissue engineering. Science. 260, 920 (1993)
107 A. Khademhosseini, R. Langer, J. Borenstein and J. P. Vacanti, Microscale technologies for tissue engineering and biology. Proceedings of the National Academy of Sciences of the United States of America. 103, 2480 (2006)
108 J. Leor, Y. Amsalem and S. Cohen, Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacology and Therapeutics. 105, 151 (2005)
109 E. S. Place, N. D. Evans and M. M. Stevens, Complexity in biomaterials for tissue engineering. Nature Materials. 8, 457 (2009)
110 A. J. Salgado, O. P. Coutinho and R. L. Reis, Bone tissue engineering: state of the art and future trends. Macromolecular Bioscience. 4, 743 (2004)
111 L. G. Griffith and G. Naughton, Tissue engineering - Current challenges and expanding opportunities. Science. 295, 1009 (2002)
112 J. P. Vacanti and R. Langer, Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 354, 32 (1999)
113 L. Zhang and T. J. Webster, Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today. 4, 66 (2009)
114 R. Langer, Tissue engineering. Molecular Therapy. 1, 12 (2000)
115 R. Langer, Perspectives and challenges in tissue engineering and regenerative medicine. Advanced Materials. 21, 3235 (2009)
116 S.-W. Choi, J. Xie and Y. Xia, Chitosan-based inverse opals: three-dimensional scaffolds with uniform pore structures for cell culture. Advanced Materials. 21, 2997 (2009)
117 M. P. Lutolf and J. A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotech. 23, 47 (2005)
118 C. van Blitterswijk, P. Thomsen, J. Hubbell, R. Cancedda, J. D. de Bruijn, A. Lindahl, J. Sohier and D. Williams, Tissue engineering. Elsevier Inc (2008)
119 M. Cheng, J. Deng, F. Yang, Y. Gong, N. Zhao and X. Zhang, Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials. 24, 2871 (2003)
120 W. Cao, D. Jing, J. Li, Y. Gong, N. Zhao and X. Zhang, Effects of the degree of deacetylation on the physicochemical properties and Schwann cell affinity of chitosan films. Journal of Biomaterials Applications. 20, 157 (2005)
121 S. W. Hsiao, D. V. H. Thien, M. H. Ho, H. J. Hsieh, C. H. Li, C. H. Hung and H. H. Li, Interactions between chitosan and cells measured by AFM. Biomedical Materials. 5, 054117 (2010)
122 P. Sangsanoh, O. Suwantong, A. Neamnark, P. Cheepsunthorn, P. Pavasant and P. Supaphol, In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells. European Polymer Journal. 46, 428 (2010)
123 H. W. Kim, J. H. Song and H. E. Kim, Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Advanced Functional Materials. 15, 1988 (2005)
124 E. Seyedjafari, M. Soleimani, N. Ghaemi and I. Shabani, Nanohydroxyapatite-Coated Electrospun Poly(l-lactide) Nanofibers Enhance Osteogenic Differentiation of Stem Cells and Induce Ectopic Bone Formation. Biomacromolecules. 11, 3118 (2010)
125 F. Sun, H. Zhou and J. Lee, Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomaterialia. 7, 3813 (2011)
126 P. X. Ma, Scaffolds for tissue fabrication. Materials Today. 7, 30 (2004)
127 Q. Hu, Z. Tan, Y. Liu, J. Tao, Y. Cai, M. Zhang, H. Pan, X. Xu and R. Tang, Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. Journal of Materials Chemistry. 17, 4690 (2007)
128 M. M. Stevens and J. H. George, Exploring and engineering the cell surface interface. Science. 310, 1135 (2005)
129 J. Venugopal, M. P. Prabhakaran, Y. Zhang, S. Low, A. T. Choon and S. Ramakrishna, Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 368, 2065 (2010)
130 R. Nirmala, K. Nam, R. Navamathavan, S.-J. Park and H. Kim, Hydroxyapatite mineralization on the calcium chloride blended polyurethane nanofiber via biomimetic method. Nanoscale Res Lett. 6, 2 (2011)
131 W. Cui, X. Li, C. Xie, H. Zhuang, S. Zhou and J. Weng, Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations. Biomaterials. 31, 4620 (2010)
132 X. Yang and L. Li, Polypyrrole nanofibers synthesized via reactive template approach and their NH3 gas sensitivity. Synthetic Metals. 160, 1365 (2010)
133 H. Wang and L. Qi, Controlled synthesis of Ag2S, Ag2Se, and Ag nanofibers by using a general sacrificial template and their application in electronic device fabrication. Advanced Functional Materials. 18, 1249 (2008)
134 C. A. Strassert, C.-H. Chien, M. D. Galvez Lopez, D. Kourkoulos, D. Hertel, K. Meerholz and L. De Cola, Switching on luminescence by the self-assembly of a platinum(II) complex into gelating nanofibers and electroluminescent films. Angewandte Chemie International Edition. 50, 946 (2011)
135 O. S. Lee, S. I. Stupp and G. C. Schatz, Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers. Journal of the American Chemical Society. 133, 3677 (2011)
136 J. Chang, X. F. Peng, K. Hijji, J. Cappello, H. Ghandehari, S. D. Solares and J. Seog, Nanomechanical stimulus accelerates and directs the self-assembly of silk-elastin-like nanofibers. Journal of the American Chemical Society. 133, 1745 (2011)
137 Y. Zhang, J. R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su and C. T. Lim, Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 29, 4314 (2008)
138 M. P. Prabhakaran, J. Venugopal and S. Ramakrishna, Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomaterialia. 5, 2884 (2009)
139 F. Peng, X. Yu and M. Wei, In vitro cell performance on hydroxyapatite particles/poly(l-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation. Acta Biomaterialia. 7, 2585 (2011)
140 F. Sheikh, N. Barakat, M. Kanjwal, S. Park, D. Park and H. Kim, Synthesis of poly(vinyl alcohol) (PVA) nanofibers incorporating hydroxyapatite nanoparticles as future implant materials. Macromolecular Research. 18, 59 (2010)
141 K. Shen, Q. Hu, L. Chen and J. Shen, Preparation of chitosan bicomponent nanofibers filled with hydroxyapatite nanoparticles via electrospinning. Journal of Applied Polymer Science. 115, 2683 (2010)
142 D. Yang, Y. Jin, G. Ma, X. Chen, F. Lu and J. Nie, Fabrication and characterization of chitosan/PVA with hydroxyapatite biocomposite nanoscaffolds. Journal of Applied Polymer Science. 110, 3328 (2008)
143 V. Thomas, D. R. Dean, M. V. Jose, B. Mathew, S. Chowdhury and Y. K. Vohra, Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite. Biomacromolecules. 8, 631 (2007)
144 Y. Zhang, V. J. Reddy, S. Y. Wong, X. Li, B. Su, S. Ramakrishna and C. T. Lim, Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan. Tissue Engineering - Part A. 16, 1949 (2010)
145 D. Yang, Y. Jin, Y. Zhou, G. Ma, X. Chen, F. Lu and J. Nie, In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds. Macromolecular Bioscience. 8, 239 (2008)
146 L. Lao, Y. Wang, Y. Zhu, Y. Zhang and C. Gao, Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. Journal of Materials Science: Materials in Medicine. 1 (2011)
147 W. Liu, Y.-C. Yeh, J. Lipner, J. Xie, H.-W. Sung, S. Thomopoulos and Y. Xia, Enhancing the stiffness of electrospun nanofiber scaffolds with a controlled surface coating and mineralization. Langmuir. 27, 9088 (2011)
148 H. Zhang, J. Liu, Z. Yao, J. Yang, L. Pan and Z. Chen, Biomimetic mineralization of electrospun poly(lactic-co-glycolic acid)/multi-walled carbon nanotubes composite scaffolds in vitro. Materials Letters. 63, 2313 (2009)
149 K. Rodriguez, S. Renneckar and P. Gatenholm, Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Applied Materials & Interfaces. 3, 681 (2011)
150 J. Chen, B. Chu and B. S. Hsiao, Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. Journal of Biomedical Materials Research - Part A. 79, 307 (2006)
151 W. Cui, X. Li, J. Chen, S. Zhou and J. Weng, In situ growth kinetics of hydroxyapatite on electrospun poly(dl-lactide) fibers with gelatin grafted. Crystal Growth & Design. 8, 4576 (2008)
152 R. Zhang and P. X. Ma, Biomimetic polymer/apatite composite scaffolds for mineralized tissue engineering. Macromolecular Bioscience. 4, 100 (2004)
153 W. Cui, X. Li, C. Xie, J. Chen, J. Zou, S. Zhou and J. Weng, Controllable growth of hydroxyapatite on electrospun poly(dl-lactide) fibers grafted with chitosan as potential tissue engineering scaffolds. Polymer. 51, 2320 (2010)
154 P. A. Madurantakam, I. A. Rodriguez, C. P. Cost, R. Viswanathan, D. G. Simpson, M. J. Beckman, P. C. Moon and G. L. Bowlin, Multiple factor interactions in biomimetic mineralization of electrospun scaffolds. Biomaterials. 30, 5456 (2009)
155 F. Yang, J. G. C. Wolke and J. A. Jansen, Biomimetic calcium phosphate coating on electrospun poly([var epsilon]-caprolactone) scaffolds for bone tissue engineering. Chemical Engineering Journal. 137, 154 (2008)
156 D. Gupta, J. Venugopal, S. Mitra, V. R. G. Dev and S. Ramakrishna, Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials. 30, 2085 (2009)
157 R. Nirmala, K. T. Nam, D. K. Park, B. Woo-il, R. Navamathavan and H. Y. Kim, Structural, thermal, mechanical and bioactivity evaluation of silver-loaded bovine bone hydroxyapatite grafted poly([epsilon]-caprolactone) nanofibers via electrospinning. Surface and Coatings Technology. 205, 174 (2010)
158 Y. Ito, H. Hasuda, M. Kamitakahara, C. Ohtsuki, M. Tanihara, I. K. Kang and O. H. Kwon, A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. Journal of Bioscience and Bioengineering. 100, 43 (2005)
159 C. Pinto Reis, R. J. Neufeld, A. J. Ribeiro and F. Veiga, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2, 8 (2006)
160 S. A. Agnihotri, N. N. Mallikarjuna and T. M. Aminabhavi, Recent advances on chitosan-based micro- and nanoparticles in drug delivery. Journal of Controlled Release. 100, 5 (2004)
161 R. P. A. Hartman, D. J. Brunner, D. M. A. Camelot, J. C. M. Marijnissen and B. Scarlett, Jet break-up in electrohydrodynamic atomization in the cone-jet mode. Journal of Aerosol Science. 31, 65 (2000)
162 I. Manisali, D. D. Y. Chen and B. B. Schneider, Electrospray ionization source geometry for mass spectrometry: Past, present, and future. TrAC - Trends in Analytical Chemistry. 25, 243 (2006)
163 A. Gomez and K. Tang, Charge and fission of droplets in electrostatic sprays. Physics of Fluids. 6, 404 (1994)
164 K. H. Roh, D. C. Martin and J. Lahann, Biphasic Janus particles with nanoscale anisotropy. Nature Materials. 4, 759 (2005)
165 H. Valo, L. Peltonen, S. Vehvilainen, M. Karjalainen, R. Kostiainen, T. Laaksonen and J. Hirvonen, Electrospray encapsulation of hydrophilic and hydrophobic drugs in poly(L-lactic acid) nanoparticles. Small. 5, 1791 (2009)
166 F. Bagheri-Tar, M. Sahimi and T. T. Tsotsis, Preparation of polyetherimide nanoparticles by an electrospray technique. Industrial and Engineering Chemistry Research. 46, 3348 (2007)
167 S. Chakraborty, I. C. Liao, A. Adler and K. W. Leong, Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Advanced Drug Delivery Reviews. 61, 1043 (2009)
168 M. Enayati, U. Farook, M. Edirisinghe and E. Stride, Electrohydrodynamic preparation of polymeric drug-carrier particles: Mapping of the process. International Journal of Pharmaceutics. 404, 110 (2011)
169 A. Barrero and I. G. Loscertales, Micro- and nanoparticles via capillary flows. Annual Review of Fluid Mechanics. 39, 89 (2007)
170 J. Liu, A. Rasheed, H. Dong, W. W. Carr, M. D. Dadmun and S. Kumar, Electrospun micro- and nanostructured polymer particles. Macromolecular Chemistry and Physics. 209, 2390 (2008)
171 B. Almeria, W. Deng, T. M. Fahmy and A. Gomez, Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. Journal of Colloid and Interface Science. 343, 125 (2010)
172 J. Xie and C. H. Wang, Encapsulation of proteins in biodegradable polymeric microparticles using electrospray in the Taylor cone-jet mode. Biotechnology and Bioengineering. 97, 1278 (2007)
173 C. Berkland, D. W. Pack and K. K. Kim, Controlling surface nano-structure using flow-limited field-injection electrostatic spraying (FFESS) of poly(,-lactide-co-glycolide). Biomaterials. 25, 5649 (2004)
174 J. Yao, L. Kuang Lim, J. Xie, J. Hua and C.-H. Wang, Characterization of electrospraying process for polymeric particle fabrication. Journal of Aerosol Science. 39, 987 (2008)
175 Y. Xu and M. A. Hanna, Electrospray encapsulation of water-soluble protein with polylactide. Effects of formulations on morphology, encapsulation efficiency and release profile of particles. International Journal of Pharmaceutics. 320, 30 (2006)
176 J. Xie, L. K. Lim, Y. Phua, J. Hua and C.-H. Wang, Electrohydrodynamic atomization for biodegradable polymeric particle production. Journal of Colloid and Interface Science. 302, 103 (2006)
177 C. Park, Y. K. Hwang, D. C. Hyun and U. Jeong, In situ localization of molecules in crosslinked particles during electrohydrodynamic process: simple route to produce microcapsules and fibers with controlled release. Macromolecular Rapid Communications. 31, 1713 (2010)
178 H. Peniche and C. Peniche, Chitosan nanoparticles: a contribution to nanomedicine. Polymer International. 60, 883 (2011)
179 K. Pancholi, N. Ahras, E. Stride and M. Edirisinghe, Novel electrohydrodynamic preparation of porous chitosan particles for drug delivery. Journal of Materials Science: Materials in Medicine. 20, 917 (2009)
180 Y. Xu and M. A. Hanna, Electrosprayed bovine serum albumin-loaded tripolyphosphate cross-linked chitosan capsules: Synthesis and characterization. Journal of Microencapsulation. 24, 143 (2007)
181 N. Arya, S. Chakraborty, N. Dube and D. S. Katti, Electrospraying: A facile technique for synthesis of chitosan-based micro/nanospheres for drug delivery applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials. 88, 17 (2009)
182 S. Zhang and K. Kawakami, One-step preparation of chitosan solid nanoparticles by electrospray deposition. International Journal of Pharmaceutics. 397, 211 (2010)
183 G. Taylor, Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 313, 453 (1969)
184 S. Ramakrishna, K. Fujihara, W. E. Teo, C. T. Lim and Z. Ma, An introduction to electrospinning and nanofibers. World Scientific (2005)
185 B. M. Min, S. W. Lee, J. N. Lim, Y. You, T. S. Lee, P. H. Kang and W. H. Park, Chitin and chitosan nanofibers: Electrospinning of chitin and deacetylation of chitin nanofibers. Polymer. 45, 7137 (2004)
186 H. Homayoni, S. A. H. Ravandi and M. Valizadeh, Electrospinning of chitosan nanofibers: Processing optimization. Carbohydrate Polymers. 77, 656 (2009)
187 S. De Vrieze, T. Van Camp, A. Nelvig, B. Hagstrom, P. Westbroek and K. De Clerck, The effect of temperature and humidity on electrospinning. Journal of Materials Science. 44, 1357 (2009)
188 S.-Y. Tsou, H.-S. Lin and C. Wang, Studies on the electrospun nylon 6 nanofibers from polyelectrolyte solutions: 1. Effects of solution concentration and temperature. Polymer. 52, 3127 (2011)
189 S. Torres-Giner, M. J. Ocio and J. M. Lagaron, Development of active antimicrobial fiber based chitosan polysaccharide nanostructures using electrospinning. Engineering in Life Sciences. 8, 303 (2008)
190 S. De Vrieze, P. Westbroek, T. Van Camp and L. Van Langenhove, Electrospinning of chitosan nanofibrous structures: feasibility study. Journal of Materials Science. 42, 8029 (2007)
191 C. K. Lee, S. J. Kim, S. I. Kim, B. J. Yi and S. Y. Han, Preparation of chitosan microfibres using electro-wet-spinning and their electroactuation properties. Smart Materials and Structures. 15, 607 (2006)
192 X.-H. Chu, X.-L. Shi, Z.-Q. Feng, Z.-Z. Gu and Y.-T. Ding, Chitosan nanofiber scaffold enhances hepatocyte adhesion and function. Biotechnology Letters. 31, 347 (2009)
193 C. Kriegel, K. M. Kit, D. J. McClements and J. Weiss, Electrospinning of chitosan-poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions. Polymer. 50, 189 (2009)
194 R. R. Klossner, H. A. Queen, A. J. Coughlin and W. E. Krause, Correlation of chitosan’s rheological properties and its ability to electrospin. Biomacromolecules. 9, 2947 (2008)
195 Y. Z. Zhang, B. Su, S. Ramakrishna and C. T. Lim, Chitosan nanofibers from an easily electrospinnable UHMWPEO-doped chitosan solution system. Biomacromolecules. 9, 136 (2007)
196 N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen and M. Zhang, Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 26, 6176 (2005)
197 L. Li and Y.-L. Hsieh, Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydrate Research. 341, 374 (2006)
198 T. Lin, J. Fang, H. Wang, T. Cheng and X. Wang, Using chitosan as a thickener for electrospinning dilute PVA solutions to improve fibre uniformity. Nanotechnology. 17, 3718 (2006)
199 Y.-T. Jia, J. Gong, X.-H. Gu, H.-Y. Kim, J. Dong and X.-Y. Shen, Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydrate Polymers. 67, 403 (2007)
200 B. Duan, X. Yuan, Y. Zhu, Y. Zhang, X. Li and K. Yao, A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. European Polymer Journal. 42, 2013 (2006)
201 Z. G. Chen, P. W. Wang, B. Wei, X. M. Mo and F. Z. Cui, Electrospun collagen-chitosan nanofiber: A biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomaterialia. 6, 372 (2010)
202 Z. Chen, X. Mo, C. He and H. Wang, Intermolecular interactions in electrospun collagen–chitosan complex nanofibers. Carbohydrate Polymers. 72, 410 (2008)
203 Z. Chen, X. Mo and F. Qing, Electrospinning of collagen–chitosan complex. Materials Letters. 61, 3490 (2007)
204 B. Dhandayuthapani, U. M. Krishnan and S. Sethuraman, Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 94B, 264 (2010)
205 J. Xu, J. Zhang, W. Gao, H. Liang, H. Wang and J. Li, Preparation of chitosan/PLA blend micro/nanofibers by electrospinning. Materials Letters. 63, 658 (2009)
206 W. H. Park, L. Jeong, D. I. Yoo and S. Hudson, Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer. 45, 7151 (2004)
207 K. Desai and K. Kit, Effect of spinning temperature and blend ratios on electrospun chitosan/poly(acrylamide) blends fibers. Polymer. 49, 4046 (2008)
208 F. Tian, Y. Liu, K. Hu and B. Zhao, Study of the depolymerization behavior of chitosan by hydrogen peroxide. Carbohydrate Polymers. 57, 31 (2004)
209 T. Indest, J. Laine, L.-S. Johansson, K. Stana-Kleinschek, S. Strnad, R. Dworczak and V. Ribitsch, Adsorption of fucoidan and chitosan sulfate on chitosan modified PET films monitored by QCM-D. Biomacromolecules. 10, 630 (2009)
210 G. G. Maghami and G. A. F. Roberts, Evaluation of the viscometric constants for chitosan. Die Makromolekulare Chemie. 189, 195 (1988)
211 G. A. F. Roberts and J. G. Domszy, Determination of the viscometric constants for chitosan. International Journal of Biological Macromolecules. 4, 374 (1982)
212 D. V. H. Thien, S. W. Hsiao and M. H. Ho, Synthesis of electrosprayed chitosan nanoparticles for drug sustained release. Nano Life. 2, 1250003 (2012)
213 K. Gong, J. A. Darr and I. U. Rehman, Supercritical fluid assisted impregnation of indomethacin into chitosan thermosets for controlled release applications. International Journal of Pharmaceutics. 315, 93 (2006)
214 S. Tirkkonen, A. Urtti and P. Paronen, Buffer controlled release of indomethacin from ethylcellulose microcapsules. International Journal of Pharmaceutics. 124, 219 (1995)
215 M.-H. Ho, C.-C. Hsieh, S.-W. Hsiao and D. Van Hong Thien, Fabrication of asymmetric chitosan GTR membranes for the treatment of periodontal disease. Carbohydrate Polymers. 79, 955 (2010)
216 T. M. Allen and P. R. Cullis, Drug delivery systems: entering the mainstream. Science. 303, 1818 (2004)
217 P. T. Hammond, Thin films: Particles release. Nature Materials. 9, 292 (2010)
218 M. Hamidi, A. Azadi and P. Rafiei, Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews. 60, 1638 (2008)
219 A. Martins, A. R. C. Duarte, S. Faria, A. P. Marques, R. L. Reis and N. M. Neves, Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials. 31, 5875 (2010)
220 J. Xie, J. C. M. Marijnissen and C.-H. Wang, Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials. 27, 3321 (2006)
221 Y. Wu, J. A. MacKay, J. R. McDaniel, A. Chilkoti and R. L. Clark, Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying. Biomacromolecules. 10, 19 (2009)
222 N. Bhattarai, J. Gunn and M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews. 62, 83 (2010)
223 M. N. V. Ravi Kumar, A review of chitin and chitosan applications. Reactive and Functional Polymers. 46, 1 (2000)
224 M. de la Fuente, M. Ravina, P. Paolicelli, A. Sanchez, B. Seijo and M. J. Alonso, Chitosan-based nanostructures: A delivery platform for ocular therapeutics. Advanced Drug Delivery Reviews. 62, 100 (2010)
225 F. Meng, Y. Jiang, Z. Sun, Y. Yin and Y. Li, Electrohydrodynamic liquid atomization of biodegradable polymer microparticles: Effect of electrohydrodynamic liquid atomization variables on microparticles. Journal of Applied Polymer Science. 113, 526 (2009)
226 J. Shui and J. C. M. Li, Platinum nanowires produced by electrospinning. Nano Letters. 9, 1307 (2009)
227 J. Tao and S. Shivkumar, Molecular weight dependent structural regimes during the electrospinning of PVA. Materials Letters. 61, 2325 (2007)
228 A. Gomez, D. Bingham, L. De Juan and K. Tang, Production of protein nanoparticles by electrospray drying. Journal of Aerosol Science. 29, 561 (1998)
229 K. Tang and A. Gomez, Monodisperse electrosprays of low electric conductivity liquids in the cone-jet mode. Journal of Colloid and Interface Science. 184, 500 (1996)
230 D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit and R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nat Nano. 2, 751 (2007)
231 C. Giacomelli, V. Schmidt and R. Borsali, Nanocontainers formed by self-assembly of poly(ethylene oxide)-b-poly(glycerol monomethacrylate)−drug Conjugates. Macromolecules. 40, 2148 (2007)
232 A. Kuskov, A. Voskresenskaya, A. Goryachaya, A. Artyukhov, M. Shtilman and A. Tsatsakis, Preparation and characterization of amphiphilic poly-N-vinylpyrrolidone nanoparticles containing indomethacin. Journal of Materials Science: Materials in Medicine. 21, 1521 (2010)
233 F. L. Mi, S. S. Shyu, C. T. Chen and J. Y. Lai, Adsorption of indomethacin onto chemically modified chitosan beads. Polymer. 43, 757 (2002)
234 F. L. Mi, H. W. Sung and S. S. Shyu, Release of indomethacin from a novel chitosan microsphere prepared by a naturally occurring crosslinker: Examination of crosslinking and polycation-anionic drug interaction. Journal of Applied Polymer Science. 81, 1700 (2001)
235 H.-K. Lee, H.-Y. Lee and J.-M. Jeon, Codeposition of micro- and nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating. Surface and Coatings Technology. 201, 4711 (2007)
236 S. G. Kumbar, K. S. Soppimath and T. M. Aminabhavi, Synthesis and characterization of polyacrylamide-grafted chitosan hydrogel microspheres for the controlled release of indomethacin. Journal of Applied Polymer Science. 87, 1525 (2003)
237 A. Berthold, K. Cremer and J. Kreuter, Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs. Journal of Controlled Release. 39, 17 (1996)
238 S. Shiraishi, T. Imai and M. Otagiri, Controlled release of indomethacin by chitosan-polyelectrolyte complex: optimization and in vivo/in vitro evaluation. Journal of Controlled Release. 25, 217 (1993)
239 J. P. Quinones, Y. C. Garcia, H. Curiel and C. P. Covas, Microspheres of chitosan for controlled delivery of brassinosteroids with biological activity as agrochemicals. Carbohydrate Polymers. 80, 915 (2010)
240 U. Farooq, J. A. Kozinski, M. A. Khan and M. Athar, Biosorption of heavy metal ions using wheat based biosorbents - A review of the recent literature. Bioresource Technology. 101, 5043 (2010)
241 J. O. Nriagu and J. M. Pacyna, Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature. 333, 134 (1988)
242 M. Monier, D. M. Ayad, Y. Wei and A. A. Sarhan, Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu(II), Co(II), and Ni(II) ions. Reactive and Functional Polymers. 70, 257 (2010)
243 V. M. Nurchi and I. Villaescusa, Agricultural biomasses as sorbents of some trace metals. Coordination Chemistry Reviews. 252, 1178 (2008)
244 D. Kołodyńska, Adsorption characteristics of chitosan modified by chelating agents of a new generation. Chemical Engineering Journal. 179, 33 (2012)
245 V. K. Gupta, Equilibrium Uptake, Sorption Dynamics, Process Development, and Column Operations for the Removal of Copper and Nickel from Aqueous Solution and Wastewater Using Activated Slag, a Low-Cost Adsorbent. Industrial and Engineering Chemistry Research. 37, 192 (1998)
246 S. Babel and T. A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials. 97, 219 (2003)
247 S. E. Bailey, T. J. Olin, R. M. Bricka and D. D. Adrian, A review of potentially low-cost sorbents for heavy metals. Water Research. 33, 2469 (1999)
248 G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science. 30, 38 (2005)
249 W. S. Wan Ngah, L. C. Teong and M. A. K. M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers. 83, 1446 (2011)
250 F. C. Wu, R. L. Tseng and R. S. Juang, A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. Journal of Environmental Management. 91, 798 (2010)
251 S. R. Jameela and A. Jayakrishnan, Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials. 16, 769 (1995)
252 G. Z. Kyzas, D. N. Bikiaris and N. K. Lazaridis, Low-swelling chitosan derivatives as biosorbents for basic dyes. Langmuir. 24, 4791 (2008)
253 Y. Qin, C. Zhu, J. Chen, D. Liang and G. Wo, Absorption and release of zinc and copper ions by chitosan fibers. Journal of Applied Polymer Science. 105, 527 (2007)
254 R.-S. Juang, F.-C. Wu and R.-L. Tseng, Adsorption removal of copper(II) using chitosan from simulated rinse solutions containing chelating agents. Water Research. 33, 2403 (1999)
255 I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society. 40, 1361 (1918)
256 H. L. Vasconcelos, T. P. Camargo, N. S. Goncalves, A. Neves, M. C. M. Laranjeira and V. T. Favere, Chitosan crosslinked with a metal complexing agent: Synthesis, characterization and copper(II) ions adsorption. Reactive and Functional Polymers. 68, 572 (2008)
257 H. Cao, T. Liu and S. Y. Chew, The application of nanofibrous scaffolds in neural tissue engineering. Advanced Drug Delivery Reviews. 61, 1055 (2009)
258 C. H. Kim, M. S. Khil, H. Y. Kim, H. U. Lee and K. Y. Jahng, An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. Journal of Biomedical Materials Research - Part B Applied Biomaterials. 78, 283 (2006)
259 J. P. Chen, G. Y. Chang and J. K. Chen, Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 313-314, 183 (2008)
260 L. Buttafoco, N. G. Kolkman, P. Engbers-Buijtenhuijs, A. A. Poot, P. J. Dijkstra, I. Vermes and J. Feijen, Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials. 27, 724 (2006)
261 I. Keun Kwon, S. Kidoaki and T. Matsuda, Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: Structural characteristics, mechanical properties and cell adhesion potential. Biomaterials. 26, 3929 (2005)
262 W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan and F. K. Ko, Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research. 60, 613 (2002)
263 G. V. Franks, B. Moss and D. Phelan, Chitosan tissue scaffolds by emulsion templating. Journal of Biomaterials Science Polymer Edition. 17, 1439 (2006)
264 P. Sangsanoh and P. Supaphol, Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules. 7, 2710 (2006)
265 M. Pakravan, M.-C. Heuzey and A. Ajji, A fundamental study of chitosan/PEO electrospinning. Polymer. 52, 4813 (2011)
266 M. Peter, N. Ganesh, N. Selvamurugan, S. V. Nair, T. Furuike, H. Tamura and R. Jayakumar, Preparation and characterization of chitosan-gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers. 80, 687 (2010)
267 S. Agarwal, A. Greimer and J. H. Wendorff, Electrospinning of manmade and biopolymer nanofibers - Progress in techniques, materials, and applications. Advanced Functional Materials. 19, 2863 (2009)
268 I. Manjubala, I. Ponomarev, I. Wilke and K. D. Jandt, Growth of osteoblast-like cells on biomimetic apatite-coated chitosan scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials. 84, 7 (2008)
269 D. Yang, Y. Jin, Y. Zhou, G. Ma, X. Chen, F. Lu and J. Nie, In Situ Mineralization of Hydroxyapatite on Electrospun Chitosan-Based Nanofibrous Scaffolds. Macromolecular Bioscience. 8, 239 (2008)
270 L. Kong, Y. Gao, G. Lu, Y. Gong, N. Zhao and X. Zhang, A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. European Polymer Journal. 42, 3171 (2006)
271 J. Li, Y. Chen, Y. Yin, F. Yao and K. Yao, Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials. 28, 781 (2007)
272 D. Baskar, R. Balu and T. S. S. Kumar, Mineralization of pristine chitosan film through biomimetic process. International Journal of Biological Macromolecules. 49, 385 (2011)
273 T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27, 2907 (2006)
274 D. H. Reneker and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 7, 216 (1996)
275 Y. Dzenis, Material science: Spinning continuous fibers for nanotechnology. Science. 304, 1917 (2004)
276 K. Shen, Q. Hu, L. Chen and J. Shen, Preparation of Chitosan bicomponent nanofibers filled with hydroxyapatite nanoparticles via electrospinning. Journal of Applied Polymer Science. 115, 2683 (2010)
277 K. T. Shalumon, N. S. Binulal, N. Selvamurugan, S. V. Nair, D. Menon, T. Furuike, H. Tamura and R. Jayakumar, Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydrate Polymers. 77, 863 (2009)
278 D. Hakimimehr, D. M. Liu and T. Troczynski, In-situ preparation of poly(propylene fumarate) - Hydroxyapatite composite. Biomaterials. 26, 7297 (2005)
279 B. M. Chesnutt, Y. Yuan, N. Brahmandam, Y. Yang, J. L. Ong, W. O. Haggard and J. D. Bumgardner, Characterization of biomimetic calcium phosphate on phosphorylated chitosan films. Journal of Biomedical Materials Research - Part A. 82, 343 (2007)
280 A. L. Patterson, The Scherrer formula for X-ray particle size determination. Physical Review. 56, 978 (1939)
281 Y. Cai, Y. Liu, W. Yan, Q. Hu, J. Tao, M. Zhang, Z. Shi and R. Tang, Role of hydroxyapatite nanoparticle size in bone cell proliferation. Journal of Materials Chemistry. 17, 3780 (2007)
282 Z. Shi, X. Huang, Y. Cai, R. Tang and D. Yang, Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomaterialia. 5, 338 (2009)
283 S. J. Heo, S. E. Kim, J. Wei, Y. T. Hyun, H. S. Yun, D. H. Kim and J. W. Shin, Fabrication and characterization of novel nano- And micro-HA/PCL composite scaffolds using a modified rapid prototyping process. Journal of Biomedical Materials Research - Part A. 89, 108 (2009)
284 K. Tuzlakoglu, N. Bolgen, A. Salgado, M. Gomes, E. Piskin and R. Reis, Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering. Journal of Materials Science: Materials in Medicine. 16, 1099 (2005)
285 C. Heinemann, S. Heinemann, A. Bernhardt, H. Worch and T. Hanke, Novel textile chitosan scaffolds promote spreading, proliferation, and differentiation of osteoblasts. Biomacromolecules. 9, 2913 (2008)
286 S. K. Ghosh, S. K. Roy, B. Kundu, S. Datta and D. Basu, Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions. Materials Science and Engineering: B. 176, 14 (2011)
287 S. Sasikumar and R. Vijayaraghavan, Low temperature synthesis of nanocrystalline hydroxyapatite from egg shells by combustion method. Trends in Biomaterials and Artificial Organs. 19, 70 (2006)
288 K. C. B. Yeong, J. Wang and S. C. Ng, Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials. 22, 2705 (2001)
289 S.-H. Rhee, Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials. 23, 1147 (2002)
290 K. Madhumathi, K. T. Shalumon, V. V. D. Rani, H. Tamura, T. Furuike, N. Selvamurugan, S. V. Nair and R. Jayakumar, Wet chemical synthesis of chitosan hydrogel–hydroxyapatite composite membranes for tissue engineering applications. International Journal of Biological Macromolecules. 45, 12 (2009)
291 T. S. B. Narasaraju and D. E. Phebe, Some physico-chemical aspects of hydroxylapatite. Journal of Materials Science. 31, 1 (1996)
292 K. Madhumathi, N. S. Binulal, H. Nagahama, H. Tamura, K. T. Shalumon, N. Selvamurugan, S. V. Nair and R. Jayakumar, Preparation and characterization of novel β-chitin-hydroxyapatite composite membranes for tissue engineering applications. International Journal of Biological Macromolecules. 44, 1 (2009)
293 H. Zhao, L. Ma, C. Gao and J. Shen, Fabrication and properties of mineralized collagen-chitosan/ hydroxyapatite scaffolds. Polymers for Advanced Technologies. 19, 1590 (2008)
294 K. R. Mohamed and A. A. Mostafa, Preparation and bioactivity evaluation of hydroxyapatite-titania/chitosan-gelatin polymeric biocomposites. Materials Science and Engineering: C. 28, 1087 (2008)

QR CODE