簡易檢索 / 詳目顯示

研究生: 王瑞豪
jui-huao Wang
論文名稱: 應用於出血性休克治療之REBOA可回收覆膜支架設計
REBOA Retrievable Membrane Stent Design for Hemorrhagic Shock Treatment
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 廖健宏
chien-hung liao
陳品銓
pin-chuan chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 125
中文關鍵詞: REBOA可回收支架覆膜
外文關鍵詞: REBOA, Retrivable Stent, Membrane
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

急救性血管內氣球阻斷術(resuscitative endovascular balloon occlusion of the aorta, REBOA)是一種被用於血管內的治療方式,當病患腹部或骨盆以下遭受重創並導致危及性命的不可壓縮性出血時,可用REBOA氣球進行腹主動脈的暫時性止血以避免患者因出血性休克而死亡,使用REBOA可暫時恢復患者血壓值、生理機能、凝血機制與血量和止血。但若是使用較大的導管(大於12Fr, 4mm)進入患者股動脈(femoral artery)或髂動脈(iliac vessels)時會造成干涉,在結束治療時,導致移除導管的困難性,增加截肢的風險。此外使用REBOA對於重症患者進行治療時,若過度阻擋血流,可能因後負荷增加導致左心室擴張、肺動脈壓升高和心肌缺血,因此需定時將氣球放氣,使部分血流通過。
本研究之目的為設計一款REBOA可回收覆膜支架,希望利用鎳鈦支架的形狀記憶合金特性取代REBOA氣球,以縮小置入導管直徑,並且在置入後,可達提升患者血壓同時避免過度阻擋血流之功能。本研究因經費考量,在支架回收的實驗中,均使用光纖雷射切割的不鏽鋼支架作為實驗樣本。為了找到回收性能較佳的支架設計,在研究中提出了五款支架設計,並且針對各個不同Connector長度、錐度與弧度的設計進行回收測試和改良,從中選出最佳的支架設計。本研究利用3D列印機依據支架幾何外型製作PVA水解模具,以進行覆膜製程;接著利用自行設計的血壓模擬系統,依據文獻90 Hg mm作為壓力實驗標準值進行測試,驗證以本研究所設計的覆膜支架進行REBOA治療的可行性。


Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a kind of treatment mean used in endovascular technique. When patients’s abodmen or pelvis have suffured severe injury and caused life-threatening, noncompressible hemorrhage, REBOA could be uesd and a REBOA balloon is inserted to the abdominal aorta, through patient’s femoral artery, for temporary occlusion and prevent them from death due to hemorrhagic shock and temporal restore blood pressure, correction of physiologic, coagulation, blood volume abnormalities and stops hemostasis in patients. However, if a normal 12Fr catheter is uesd for the operation, it could have serious interference in patient’s femoral artery and iliac vessels. At the end of operation, to remove the catheter could be difficult and increase the risk of amputation. In addition, if REBOA is used to the treatment of critically ill patients and blocks blood flow excessively, the left ventricular dilatation, pulmonary hypertension and myocardial ischemia may occur due to increase afterload, so intermittent deflation is required to allow partial blood flow.
The purpose of this study is to design a retrievable REBOA membrane stent. The stent uses the shape memory characteristic of the NiTi to replace REBOA balloon and reduces the diameter of the catheter. After placing the stent, it can raise the patient’s blood pressure and, at the same time, allow partial blood flow beyond the balloon to avoid over-blocking of the blood flow. Considering our limited budget, the stent samples for retrievable experiments stainless were cut from steel tubes by fiber laser in this study. In order to find the better retrivable stent design, in this study, five stent designs, with different connector length, taper and radian, were proposed and tested, and the experimental results were uesd to modify the design for optimal retrievable performance. The best one of these stent designs was selected as the geometry of PVA mold and it was built by a 3D printer. Then the PVA mold was used in the thin film process for achieving the stent’s membrane. Finally, a blood flow simulation system was used to test the developed membrane stent with the condition of 90 mmHg pressure. The result can verify the feasibility of our REBOA stent.

摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XV 第一章、緒論 1 1.1. 前言 1 1.2. 研究動機 2 1.3. 研究目的 2 1.4. 本文架構 3 第二章、文獻回顧 5 2.1. 急救性血管內氣球阻斷術(REBOA)介紹 5 2.2. 生醫支架 10 2.3. 鎳鈦合金之機械性質 14 2.4. 鎳鈦合金之熱處理參數 18 2.5. 雷射加工參數 22 第三章、研究方法與實驗規劃 29 3.1. REBOA支架設計 30 3.1.1. 支架之幾何關係 31 3.1.2. 參數化設計與目標 32 3.1.3. 設計限制條件與訂定條件 35 3.1.4. REBOA支架繪製 37 3.2. 可回收支架設計與實驗規劃 39 3.2.1. 支架錐度長度與角度設計 40 3.2.2. 支架前端與末端尺寸設計 41 3.2.3. Connector層數與長度設計 42 3.2.4. 錐度與弧度設計 44 3.3.光纖雷射加工系統 45 3.3.1. 雷射加工原理 45 3.3.2. 光纖雷射系統 48 3.3.3. 光纖雷射實驗流程規劃 50 3.3.4 光纖雷射加工參數 51 3.3.5. 光纖雷射之機台操作 56 3.4. 支架擴張規劃與模擬 60 3.4.1. 建立有限元素模型 61 3.4.2. 材料性能定義 61 3.4.3. 網格大小收斂性分析 62 3.5. 後處理製程 64 3.5.1. 噴砂 64 3.5.2. 酸洗 64 3.5.3. 電解拋光 65 3.6. 支架覆膜 66 3.6.1. 3D列印機製作水解模具 66 3.6.2. 擴張模具製作脫模覆層 67 3.6.3. PU溶液配置方法 67 3.6.4. 製作覆膜支架 68 3.7. 可回收支架實驗設計與規劃 68 3.8. 血壓模擬系統 70 3.9. 實驗設備 72 3.9.1. 超音波震盪機 72 3.9.2. 冷凍櫃 72 3.9.3. 熱處理高溫爐 73 3.9.4. 壓縮裝置 74 3.9.5. 熱風循環烘箱(cyclic oven) 74 3.9.6. 血壓模擬系統 75 3.9.7. 3D列印機 76 3.9.8. 噴砂機 77 第四章、實驗結果與討論 78 4.1. 可回收支架 78 4.1.1. Connector層數與長度 78 4.1.2. 錐度與弧度 81 4.1.3. 後處理與改善支點結構 82 4.1.4. 覆膜支架 83 4.2. 光纖雷射實驗 84 4.2.1. 支架切割路徑 85 4.2.2. 支架輔助脫料線路徑 85 4.2.3. 支架熔渣處理 86 4.3. 支架擴張製程 87 4.3.1. 初始設計模擬結果與實際擴張結果之比較 87 4.4.2. 改良設計模擬結果 88 4.4. 支架覆膜製程 89 4.4.1. PU溶液配置 89 4.4.2. 支架薄膜製作 89 4.5. 可回收支架結果 91 4.5.1. Connector層數與長度回收 91 4.5.2. 錐度與弧度回收結果 97 4.5.3. 後處理與改善支點結構回收過程與結果 98 4.5.4. 覆膜支架回收過程與結果 99 4.6. 血壓模擬實驗 100 第五章、結論與未來展望 101 5.1. 結論 101 5.2. 未來展望 103 參考文獻 105

[1] 江文莒,「創傷院外心臟停止病患救護新知-2017年度回顧」,社團法人中華緊急救護技術員協會醫誌,2018。
[2] Z. Qasim, M. Brenner, J. Menaker, and T. Scalea, "Resuscitative Endovascular Balloon Occlusion of the Aorta", Resuscitation, vol. 96, pp. 275-279, 2015.
[3] H. K. Shin, H.-S. Han, T. Lee, D.-J. Park, K. Jung, and K. Kim, "Resuscitative Endovascular Balloon Occlusion of the Aorta in a Trauma Patient with Hypovolemic Shock", Korean Journal of Critical Care Medicine, vol. 30, no. 2, pp. 115-118, 2014.
[4] A. Stannard, J. L. Eliason, and T. E. Rasmussen, "Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) as an Adjunct for Hemorrhagic Shock", Journal of Trauma-Injury Infection and Critical Care, Article vol. 71, no. 6, pp. 1869-1872, 2011.
[5] E. Gamberini, F. Coccolini, B. Tamagnini, C. Martino, V. Albarello, M. Benni, M isulli, N. Fabbri,T. M. Horer, L. Ansaloni, C. Coniglio, M. Barozzi, V. Agnoletti, "Resuscitative Endovascular Balloon Occlusion of the Aorta in trauma: A Systematic Review of the Literature", World Journal of Emergency Surgery, Review vol. 12, p. 8, 2017, Art. no. 42.
[6] S. Sridhar, S. D. Gumbert, C. Stephens, L. J. Moore, and E. G. Pivalizza, "Resuscitative Endovascular Balloon Occlusion of the Aorta: Principles, Initial Clinical Experience, and Considerations for the Anesthesiologist", Anesthesia and Analgesia, Review vol. 125, no. 3, pp. 884-890, 2017.
[7] M. Mehta, J. Taggert, R. C. Darling, B. B.Chang, P. B. Kreienberg, P. S. K Paty, S. P. Roddy, Y. Sternbach, K. J. Ozsvath, D. M. Shah, , "Establishing a Protocol for Endovascular Treatment of Ruptured Abdominal Aortic Aneurysms: Outcomes of a Prospective Analysis", Journal of Vascular Surgery, Article; Proceedings Paper vol. 44, no. 1, pp. 1-8, 2006.
[8] M. A. F. Ribeiro Jênior, "Resuscitative endovascular balloon occlusion of the aorta (REBOA): an updated review", Revista do Colégio Brasileiro de Cirurgiões, vol. 45, 2018.
[9] W. L Biffl, C. J Fox, and E. Moore. "The Role of REBOA in the Control of Exsanguinating Torso Hemorrhage". pp. 1054-1058, 2015.
[10] PRYOR™ MEDICAL, ER-REBOA™ Catheter Instructions for Use, 2015 from:http://prytimemedical.com/wp-content/uploads/2016/07/7001-01-Rev-A_Pryor-ER-REBOA-Instructions-for-Use.pdf
[11] D. Stoeckel, C. Bonsignore, and S. Duda, "A Survey of Stent Designs", Minimally Invasive Therapy & Allied Technologies, Article vol. 11, no. 4, pp. 137-147, 2002.
[12] D. Carnelli, G. Pennati, T. Villa, L. Baglioni, B. Reimers, and F. Migliavacca, "Mechanical Properties of Open-Cell, Self-Expandable Shape Memory Alloy Carotid Stents", Artificial Organs, Letter vol. 35, no. 1, pp. 74-U152, 2011.
[13] D. E. Hodgson, W. H. Ming, and R. J. Biermann. "Shape Memory Alloys" (ASM Handbook). pp. 897-902, 1990.
[14] A. R. Pelton, J. DiCello, and S. Miyazaki, "Optimisation of Processing and Properties of Medical Grade Nitinol Wire", Minimally Invasive Therapy & Allied Technologies, Article vol. 9, no. 2, pp. 107-118, 2000.
[15] M. Dolce and D. Cardone. "Mechanical Behaviour of SMA Elements for Seismic Applications—Part 2 Austenite NiTi Wires Subjected to Tension". pp. 2657-2677, 2001.
[16] K. Otsuka and T. Kakeshita, "Science and Technology of Shape-Memory Alloys: New Developments", MRS Bulletin, vol. 27, no. 2, pp. 91-100, 2011.
[17] S. A. Shabalovskaya. "On the Nature of the Biocompatibility of and on Medical Applications of NiTi Shape Memory Alloys". pp. 267-89, 1996.
[18] X. P. Liu, Y. N. Wang, D. Z. Yang, and M. Qi, "The Effect of Ageing Treatment on Shape-Setting and Superelasticity of a Nitinol Stent", Materials Characterization, Article vol. 59, no. 4, pp. 402-406, 2008.
[19] K. F. Kleine, B. Whitney, and K. G. Watkins. "Use of Fiber Lasers for Micro Cutting Applications in the Medical Device Industry". 2002.
[20] M. Baumeister, K. Dickmann, and T. Hoult. "Fiber Laser Micro-Cutting of Stainless Steel Sheets". pp. 121-124, 2006.
[21] N. Muhammad, M. M. A. B. Abdullah, M. Shuhidan Saleh, and L. Li. "Laser Cutting of Coronary Stents: Progress and Development in Laser Based Stent Cutting Technology". pp. 345-350, 2015.
[22] N. Muhammad, D. Whitehead, A. Boor, W. Oppenlander, Z. Liu, and L. Li. "Picosecond Laser Micromachining of Nitinol and Platinum–Iridium Alloy for Coronary Stent Applications". pp. 607-617, 2011.
[23] C.-S. Chen, S.-Y. Lin, N. Chou, Y.-S. Chen, and S.-F. Ma. "Optimization of Laser Processing in the Fabrication of Stents". pp. 2023-2027, 2012.
[24] 高慶隆,「5Fr鎳鈦膽道支架研發(Development of 5-French Nitinol Biliary Stents)」,國立台灣科技大學,2016。
[25] 吳子奇,「雷射切割膽管支架的可取回設計(Retrievable Desigh of Laser Cutting Biliary Stent)」,國立台灣科技大學,2015。
[26] 張哲輔、余陳瑋、楊仲棋、柯朝元,「腹主動脈瘤」, 2012 取自:http://www.tafm.org.tw/ehc-tafm/s/viewDocument?documentId=c96ceca895e147d5b98b42bb83f54f68
[27] 蔡宗河,「CO2雷射加工」,全華圖書股份有限公司,1995。
[28] MSE, Principles and Applications of Laser, 2016 from:http://electrons.wikidot.com/principle-and-application-of-laser
[29] 鄭博謙,「膽管支架擴張製程與可取回設計(Expansion Process and Retrievable Design of Biliary Stent )」,國立台灣科技大學,2014。
[30] 陳正宗,「膽管支架之設計與光纖雷射加工(Design and Fiber Laser Cutting of Biliary Stent )」,國立台灣科技大學,2013。
[31] 林三寶,「雷射原理與應用」,全華科技圖書股份有限公司,2009。
[32] H. Misawa, & Juodkazis, S. (Eds.). "3D Laser Microfabrication: Principles and Applications ". John Wiley & Sons, 2006.
[33] J. Krüger and W. Kautek. "Ultrashort Pulse Laser Interaction with Dielectrics and Polymers" (Polymers and Light). Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 247-290, 2004.
[34] 張國順、鄭壽昌,「現代雷射製造技術」,新文京開發出版股份有限公司,2008。
[35] P. Mannion, J. Magee, E. Coyne, and G. M. O'Connor, "Ablation Thresholds in Ultrafast Laser Micromachining of Common Metals in Air," in OPTO Ireland, 2003, vol. 4876, p. 9: SPIE.
[36] 許育豪,「飛秒雷射製作金屬玻璃微奈米轉印精密模具應用分析(Applications and analyses of precise nanoimprint mold of metallic glass fabricated by femtosecond laser)」,國立台灣科技大學,2011。
[37] 耿緯皓,「生醫支架的可降解多層覆膜研究(A Study of Biodegradable Multilayer Thin Film for Biomedical Stent)」,國立台灣科技大學,2015。
[38] 曹韋量,「自潔多層覆膜支架開發(Development of Multilayer Covered Self-Cleaning Stent)」,國立台灣科技大學,2017。

無法下載圖示 全文公開日期 2023/08/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE