簡易檢索 / 詳目顯示

研究生: 蘭真
Jen - Lan
論文名稱: 偏折噴流之剪流層渦漩動力機制與紊流特性
Vortex Dynamics and Turbulence Characteristics of an Elevated Transverse Jet
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 游明輝
Ming-Huei Yu
孫珍理
Chen-Li Sun
陳明志
Ming-Jyh Chern
趙振綱
Ching-Kong Chao
蘇裕軒
Yu-Hsuan Su
陳炳煇
Ping-Hei Chen
蕭飛賓
Fei-Bin Hsiao
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 262
中文關鍵詞: 搖擺引致剪切引致
外文關鍵詞: shear-induced, swing-induced
相關次數: 點閱:162下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文使用實驗方法探討圓管噴流受橫流衝擊時,所形成之凝序性流體結構之特徵模式與衍化機制以及整體流場之特性。噴流係由一個特殊設計之空氣供應系統提供,橫流則由一低速風洞模擬產生。藉由雷射光頁輔助之煙霧流場觀察技術及高速質點影像速度儀(Time-resolved Particle Image Velocimeter, PIV)所獲得之垂直與平行切面的影像與速度資料,得以進行平均流場與瞬時流場之定性與定量分析。實驗過程同時利用熱線風速儀與高速資料擷取系統,針對噴流剪流層衍化生成之凝序性結構進行速度與特徵頻率診測。噴流對應橫流之動量通量比與橫流雷諾數為實驗的主要控制參數。分析圓管噴流出口附近剪流層之連續衍化照片與速度向量,在不同的噴流對應橫流之動量通量比範圍,確認出五種特徵型式渦漩,分別是「混合層式渦漩」、「向後滾轉渦漩」、「向前滾轉渦漩」、「搖擺引致蕈狀渦漩」與「噴流型式渦漩」。當動量通量比在0.49以下時,噴流動量較小且支撐性較低,噴流受衝擊後偏折角度較大。此時剪流層渦漩結構主要由剪切作用引致產生,此範圍之渦漩型式包含有「混合層式渦漩」、「向後滾轉渦漩」與「向前滾轉渦漩」。當動量通量比在0.49至1.01時,噴流與橫向流之動量差異減小且偏折現象減緩,横向流衝擊氣柱之影響逐漸超越剪切作用並引致管口附近氣柱產生前後搖擺運動。此時噴流渦漩結構主要由搖擺引致作用產生,此範圍之渦漩型式屬於「搖擺引致蕈狀渦漩」。當動量通量比大於1.01時,噴流動能超越橫流動能,此時氣柱搖擺運動停止,且剪切作用再度主導形成「噴流型式渦漩」結構。應用拓樸理論分析流場渦流運動,可明確分辨出節點、鞍點、焦點及分歧線等流線型態與分佈區域。藉由熱線風速計量得剪流層之即時風速資料,經過運算分析後可得特徵頻率、史卓荷數、功譜密度函數等數據,並發現史卓荷數隨噴流對應橫流之動量通量比增加,對應形成指數衰退型相關函數。應用樣本平均法,分別獲得垂直平面與水平面之平均流場特性,其中包含速度分佈、流線分佈與渦度分佈。本文另針對流場紊流特性,利用統計分析方法將速度資料分別轉換為紊流強度、紊流應力與紊流動能進行分析。


Characteristics and evolution mechanisms of the traveling coherent structure in the shear layer of an elevated jet in a crossflow are experimentally studied. The jet flow is supplied by a specially designed air supply system. A steel tube connected with the nozzle assembly is inserted into a crossflow formed by a low speed wind tunnel. The instantaneous and time-averaged flow field characteristics of the vertical plane as well as horizontal plane which are observed and measured by using a laser light-sheet flow visualization technique and a high-speed timed-resolved Particle Image Velocimeter (PIV) are qualitatively and quantitatively studied. Time histories of the instantaneous velocity of the vortical flows in the shear-layer are recorded by a hot-wire anemometer and a high-speed data acquisition system in order to analyze the frequency characteristics of the traveling coherent structure in the shear-layer. Experiments are performed at different jet-to-crossflow momentum flux ratios, and different crossflow Reynolds numbers. The behaviors and mechanisms of the vortical flow structure and the vorticity evolution mechanisms appear to be distinct in different flow regimes. By analyzing the streak pictures of the smoke flow visualization and the sequential vector maps, five kinds of vortices evolution mechanisms, “mixing-layer type vortices”, “backward-rolling vortices”, “forward-rolling vortices”, “swing-induced mushroom vortices”, and “jet-type vortices”, can be identified in the shear-layer evolving from the jet exit. When the jet-to-crossflow momentum flux ratios are lower than 0.49, the jet column is weak and bent severely so that the coherent structures of the shear layer are mainly induced by the shear force developed between the high-speed crossflow and the low-speed jet. There are three kinds of vortices “mixing-layer type vortices”, “backward-rolling vortices”, and “forward-rolling vortices” in the regime. When the jet-to-crossflow momentum flux ratios are increased in the range between 0.49 and 1.01, the jet column is getting strong and the bent angle is decreased which causes the decreased shear effect and increased impinging effect of the crossflow on the jet to induce a swing motion of the jet column near the tube-tip so that the “swing-induced mushroom vortices” are induced by the swing motion. When the jet-to-crossflow momentum flux ratios are larger than 1.01, the momentum of the jet is larger than crossflow and the jet column is strong enough to sustain the impingement of the crossflow so that the swing motion of the jet column is disappear and the shear force appearing in the upper shear-layer induces the “jet-type vortices”. The nodes, saddles, foci, and bifurcation lines of the flow structures can be identified by applying the topology method. The frequency characteristics, Strouhal number and power-spectral density functions are obtained by processing the measured instantaneous velocity data. The Strouhal number is found to decay exponentially with the increase of the jet-to-crossflow momentum flux ratio. The average characteristics of the velocity, streamline and vorticity distributions in the vertical and horizontal planes are obtained by applying the ensemble average method. The velocity data can be transferred to turbulent intensity, turbulent stress and turbulent kinetic energy by statistics method.

中文摘要…………………………………………………………. i 英文摘要………………………………………………………….. iii 誌謝……………………………………………………………….. v 目錄……………………………………………………………….. vi 符號索引………………………………………………………….. ix 表圖目錄………………………………………………………….. xii 第一章 緒論………………………………………………………. 1 1.1 研究動機…………………………………………… 1 1.2 文獻回顧…………………………………………… 4 1.3 研究目的…………………………………………… 11 第二章 實驗設備、儀器及方法..……………………………... 13 2.1 實驗設備…………..………………………………….. 13 2.1.1 風洞…………………………………….……...... 13 2.1.2 噴流供應系統………………………….……...... 14 2.1.3 煙霧產生器…………………………….……...... 17 2.2實驗儀器與方法……...……………………………….. 20 2.2.1 雷射光頁與流場觀察法……………….……...... 20 2.2.2 皮托管與橫流速度量測……………………....... 22 2.2.3 熱線風速儀與頻率偵測….…………………...... 22 2.2.4質點影像速度儀……………………………….... 23 第三章 剪流層非穩態渦漩衍化特性與動力機制…………….… 31 3.1 流場特徴模式………………….……….……….......... 31 3.1.1 混合層式渦漩(mixing-layer type vortices)........ 32 3.1.2 向後滾轉渦漩(backward-rolling vortices)……... 35 3.1.3 向前滾轉渦漩(forward-rolling vortices)……….. 38 3.1.4 搖擺引致蕈狀渦漩(swing-induced mushroom vortices)…40 3.1.5 噴流型式渦漩(jet-type vortices)……………….. 44 3.2 特徵流場分區………………………………..……..... 46 3.3頻率特徴………………………......................... 46 3.4波數(wave number)……………........................ 55 3.5 PIV量測分析剪流層非穩態渦漩衍化特性與動力機制......56 3.5.1 剪流層渦漩結構平移速度分析…….................. 57 3.5.2 PIV量測分析「混合層式渦漩」衍化特性.......... 59 3.5.3 PIV量測分析「向後滾轉渦漩」衍化特性.......... 61 3.5.4 PIV量測分析「向前滾轉渦漩」衍化特性.......... 63 3.5.5 PIV量測分析「搖擺引致蕈狀渦漩」衍化特性.... 65 3.6剪流層渦漩衍化之拓樸分析…......................... 67 3.7小結……………………………......................... 71 第四章 平均流場分析……………………………………………. 74 4.1 垂直剖面平均流場分析……….……….…………….. 74 4.2 水平剖面平均流場分析……….………….. …… 82 4.3 垂直剖面平均流場拓樸分析……………………… 88 4.4 水平剖面平均流場拓樸分析………………………… 91 4.5 綜合流場特徴分區…………………………………… 93 4.6 小結…………………..………........................ 94 第五章 紊流特性分析……………………………………………. 96 5.1 垂直剖面紊流特性分析…… ……….………..… 98 5.1.1 垂直剖面x方向紊流強度分析…… .……... 98 5.1.2 垂直剖面z方向紊流強度分析………… ... 99 5.1.3 x-z平面紊流應力分析…………..… …... 101 5.1.4 x-z平面紊流動能分析…………..… …... 102 5.2 水平剖面紊流特性分析…………….… …….… 104 5.2.1 水平剖面x方向紊流強度分析…….… …... 104 5.2.2 水平剖面y方向紊流強度分析……… …... 107 5.2.3 x-y平面紊流應力分析………….. ……... 110 5.2.4 x-y平面紊流動能分析…………..… …... 112 5.3 小結…………………..………................ 114 第六章 結論與建議………………………………………………. 116 6.1 結論…………....…………….……….……………….. 116 6.2 建議………..………..……….……….……………….. 118 參考文獻………………………………………………………... 120

[1] Fric, T. F. and Roshko, J., “Vortical Structure in the Wake of a Transverse Jet,” Journal of Fluid Mechanics, Vol. 279, 1994, pp. 1-47.
[2] Jordinson, R, “Flow in a Jet Directed Normal to the Wind,” British Aeronautical Research Council, Reports and Memoranda No.3074, 1956, pp. 1-17.
[3] Epshtein, A. M., “Shape of Turbulent Jet Axis in an Unbounded Horizontal Cross Flow,” Journal of Engineering Physics, Vol. 9, No. 4, 1965, pp. 451-456.
[4] Shandorov, G. S., “Calculation of the Axis of a Cross Flow,” Soviet Aeronautics, Vol. 2, No. 2, 1966, pp. 60-62.
[5] Pratte, B. D. and Baines, W. D., “Profiles of the Round Turbulent Jet in a Cross Flow,” Journal of the Hydraulics Division, Proceeding of the American Society of Civil Engineers, Vol. 93, No. HY6, 1967, pp. 53-64.
[6] Patrick, M. A., “Experimental Investigation of Mixing and Flow in a Round Turbulent Jet Injected Perpendicularly into a Main Stream,” Journal of the Institute of Fuel, September, 1967, pp. 425-431.
[7] Chassaing, P., George, J., Claria, A., and Sananes, F., “Physical Characteristics of Subsonic Jets in a Cross-Stream,” Journal of Fluid Mechanics, Vol. 62, Part 1, 1974, pp. 41-64.
[8] Muppidi, S. and Mahesh, K., “Study of Trajectories of Jets in Crossflow Using Direct Numerical Simulations,” Journal of Fluid Mechanics, Vol. 530, 2005, pp. 81-100.
[9] Keffer, J. F. and Baines, W. D., “The Round Turbulent Jet in a Cross-Wind,” Journal of Fluid Mechanics, Vol. 15, 1963, pp. 481-496.
[10] Ramsey, J. W. and Goldstein, R. J., “Interaction of a Heated Jet with a Deflecting Stream,” ASME-AICHE Heat Transfer Conference, Tulsa, Okla., August 15-18, 1971, Paper No. 71-HT-2, pp. 1-8.
[11] Kamotani, Y. and Greber, I., “Experiments on a Turbulent Jet in a Cross Flow,” AIAA Journal, Vol. 10, No. 11, 1972, pp. 1425-1429.
[12] Rudinger, G. and Moon, L. F., “Laser-Doppler Measurements in a Subsonic Jet Injected into a Subsonic Cross Flow,” Journal of Fluids Engineering, ASME Transactions, vol. 98, 1976, pp. 516-520.
[13] Fearn, R. and Weston, R. P., “Vorticity Associated with a Jet in a Cross Flow,” AIAA Journal, Vol. 12, No. 12, 1974, pp. 1666-1671.
[14] Sykes, R. I., Lewellen, W. S., and Parker, S. F., “On the Vorticity of a Turbulent Jet in a Crossflow,” Journal of Fluid Mechanics, Vol. 168, 1986, pp. 393-413.
[15] Mcmahon, H. M., Hester, D. D., and Palfery, J. G., “Vortex Shedding from a Turbulent Jet in a Cross-Wind,” Journal of Fluid Mechanics, Vol. 48, part 1, 1971, pp. 73-80.
[16] Roshko, A., “On the Development of Turbulent Wakes from Vortex Streets,” National Advisory Committee for Aeronautics, Technical Note, 1953, No.2913.
[17] Kelso, R. M. and Smits, A. J., “Horseshoe Vortex System Resulting from the Interaction between a Laminar Boundary Layer and a Transverse Jet,” Physics of Fluids, Vol. 7, No. 1, 1995, pp. 153-158.
[18] Andreopoulos, J., “On the Structure of Jets in a Crossflow,” Journal of Fluid Mechanics, Vol. 157, 1985, pp. 163-197.
[19] Krothapalli, A. and Lourenco, L., “Separated Flow Upstream of a Jet in a Crossflow,” AIAA Journal, Vol. 28, No. 3, 1989, pp. 414-420.
[20] Moussa, Z. M., Trischka, J. W., and Eskinazi, S., “The Near Field in the Mixing of a Round Jet with a Cross-Stream,” Journal of Fluid Mechanics, Vol. 80, Part 1, 1977, pp. 49-80.
[21] Kelso, R. M., Lim, T. T., and Perry, A. E., “An Experimental Study of Round Jets in Cross-Flow,” Journal of Fluid Mechanics, Vol. 306, 1996, pp. 111-144.
[22] New, T. H., Lim, T. T., and Luo, S. C., “Elliptic Jets in Cross-Flow,” Journal of Fluid Mechanics, Vol. 494, 2003, pp. 119-140.
[23] Wu, J. M., Vakili, A. D., and Yu, F. M., “Investigation of the Interacting Flow of Nonsymmetric Jets in Crossflo,” AIAA Journal, Vol. 26, No. 8, 1988, pp. 940-947.
[24] Liscinsky, D. S. and True, B., “Crossflow Mixing of Noncircular Jets,” 33rd Aerospace Sciences Meeting and Exhibit, AIAA-95-0732, January, 1995, pp. 1-11.
[25] Tyagi, M. and Acharya, S., “Large Eddy Simulations of Rectangular Jets in Crossflow: Effect of Hole Aspect Ratio,” Second AFSOR Conference on DNS/LES, Rutgers Univ., NJ, June, 1999, pp. 1-12.
[26] 姜國強、李煒, “横流中有限寬窄縫射流的漩渦結構,” 水利學報, 第五期, 2004年5月, pp. 52-63.
[27] 郭婷婷、徐中、李少華 “兩種角度橫向紊動射流的實驗分析,” 西安交通大學學報, 第37卷, 第11期, 2003年11月, pp. 1207-1210.
[28] Crabb, D., Durão, D. F. G., and Whitelaw, J. H., “A round jet normal to a cross flow,” Journal of Fluids Engineering, ASME Transactions, Vol. 103, 1981, pp. 142-152.
[29] Brizzi, L. E., Foucault, E., and Bousgarbies, J. L., “Vortices Organization in the Near Field of a Jet Issuing Normally into a Crossflow,” Journal of Flow Visualization & Image Processing, Vol. 5, 1998, pp. 17-28.
[30]
Huang, R. F. and Wang, S. M., “Characteristics Flow Modes of Wake-Stabilized Jet Flames in a Transverse Air Stream,” Combustion and Flame, Vol. 117, No. 1/2, 1999, pp. 59-77.
[31]
Tsue, M. and Kadota, T., “Detailed Measurements of the Structure of a Jet Diffusion Flame in a Cross Flow,” Proceedings of the Combustion Institute, Vol. 28, 2000, pp. 295-301.
[32]
Qi, M., Chen, Z., and Fu, R., “Flow Structure of the Plane Turbulent Impinging Jet in Cross Flow,” Journal of Hydraulic Research, Vol. 39, No. 2, 2001, pp. 155-161.
[33] Huang, R. F. and Hsieh, R. H., “Flow Visualization and LDV Measurement on Near-Wake of Elevated Jets in a Crossflow,” Proceeding of PSFVIP-4, Chamonix, France, Paper No. F4101, June 3-5, 2003.
[34] Broadwell, J. E. and Breidenthal, R. E., “Structure and Mixing of a Transverse Jet in Incompressible Flow,” Journal of Fluid Mechanics, Vol. 148, 1984, pp. 405-412.
[35] Huang, R. F. and Chang, J. M., “Coherent Structure in a Combustion Jet in Crossflow,” AIAA Journal, Vol. 32, No. 6, 1994, pp. 1120-1125.
[36] Meyer, K. E., Özcan, O., and Larsen, P. S., “Point and Planar LIF for Velocity-Concentration Correlations in a Jet in Cross Flow,” proceedings of 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, July 10-13, 2000, Paper No. 18.5.
[37] Su, L. K. and Mungal, M. G., “Simultaneous Measurements of Scalar and Velocity Field Evolution in Turbulent Crossflowing Jets,” Journal of Fluid Mechanics, Vol. 513, 2004, pp. 1-45.
[38] Su, L. K., “Measurements of Scalar and Velocity Fields in Turbulent Crossflowing Jets with Low Velocity Ratio,” AIAA paper 2000-0815, 2000.
[39] Pan, G. and Meng, H., “An Experimental Study of Turbulent Mixing in a Tee Mixer Using PIV and PLIF,” AICHE J., Vol. 47, 2001, pp. 2653-2665.
[40]
Bournot, P., Caminat, P., Mahjoub, N., and Stefanini, J., “Experimental Study of the Plume Emitted by a Smokestack,” Proceeding of PSFVIP-4, Chamonix, France, Paper No. F4049, June 3-5, 2003.
[41] Eiff, O. S., Kawall, J. G., and Keffer, J. F., “Lock-in of Vortices in the Wake of an Elevated Round Turbulent Jet in a Crossflow,” Experiments in Fluids, Vol. 19, 1995, pp. 203-213.
[42] Eiff, O. S. and Keffer, J. F., “On the Structure in the Near-Wake Region of an Elevated Turbulent Jet in a Crossflow,” Journal of Fluid Mechanics, Vol. 333, 1997, pp. 161-195.
[43] Andreopoulos, J., “Wind Tunnel Experiments on Cooling Tower Plumes, Part I: In Uniform Cross Flow,” ASME Paper 86-WA/HT-32, Annual Meeting, Anaheim, California, December 7-12, 1986.
[44] Andreopoulos, J., “Wind Tunnel Experiments on Cooling Tower Plumes, Part II: In Non-Uniform Cross Flow of Boundary Layer Type,” ASME Paper 86-WA/HT-32, Annual Meeting, Anaheim, California, December 7-12, 1986.
[45] Andreopoulos, J., “Measurements in a Jet-Pipe Flow Issuing Perpendicularly into a Cross Stream,” Journal of Fluids Engineering, ASME Transactions, vol. 104, 1982, pp. 493-499.
[46] Andreopoulos, J. and Rodi, W., “Experimental Investigation of Jets in a Crossflow,” Journal of Fluid Mechanics, Vol. 138, 1984, pp. 93-127.
[47] Peterson, S. D. and Plesniak, M. W., “Evolution of Jets Emanating from Short Holes into Crossflow,” Journal of Fluid Mechanics, Vol. 503, 2004, pp. 57-91.
[48]

Hussain, A. K. M. F. and Ramjee, V., “Effect of the Axisymmetric Contraction Shape on Incompressible Turbulent Flow,” Journal of Fluids Engineering, ASME Transactions, vol. 98, No. 1, 1976, pp. 58-69.
[49] Flagan, R. C. and Seinfeld, J. H., “Fundamentals of Air Pollution Engineering,” Prentice Hall, Englewood Cliffs, New Jersey, 1988, pp. 290-357.
[50] Keane, R. D. and Adrian, R. J., “Optimization of Particle Image Velocimeters, Part I: Double Pulsed System,” Measurement Science and Technology, vol. 1, 1990, pp. 1202-1215.
[51] Zaman, K. B. M. Q. and Hussain, A. K. M. F. “Taylor Hypothesis and Large-Scale Coherent Structures,” Journal of Fluid Mechanics, Vol. 112, 1981, pp. 379-396.
[52]
Lighthill, M. J., “Laminar Boundary Layer,” Ed. Rosenhead, L., Oxford University, College of Engineer, 1963, pp. 48-88.
[53]
Perry, A. E. and Fairlie, B. D., “Critical Points in Flow Patterns,” Advance in Geophysics, vol. 18, No. B, 1974, pp. 299-315.
[54]
Perry, A. E. and Chong M. S., “The Vortex-Shedding Process Behind Two-Dimensional Bluff Bodies,” Journal of Fluid Mechanics, Vol. 116, 1982, pp. 77-90.
[55] Perry, A. E. and Steiner, T. R., “Large-Scale Vortex Structures in Turbulent Wakes Behind Bluff Bodies. Part 1. Vortex Formation Processes,” Journal of Fluid Mechanics, Vol. 174, 1987, pp. 233-270.
[56]
Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., “Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualization,” Journal of Fluid Mechanics, Vol. 86, part 1, 1978, pp. 179-200.
[57]
Coutanceau, M. and Pineau, G., “Some Typical Mechanisms in the Early Phase of the Vortex-Shedding Process from Particle-Streak Visualization,” Atlas of Visualization III, Eds. Nakayama, Y. and Tanida, Y., CRC Press, Boca Raton, 1997, pp. 43-86.

QR CODE