簡易檢索 / 詳目顯示

研究生: 李勁衡
CHIN-HENG LEE
論文名稱: 使用低成本柔性奈米壓印薄膜通過物理氣相沉積法製備 SERS 基板對三聚氰胺進行定量分析
Quantitative Analysis of Melamine Using Low-Cost Flexible Nanoimprinted Films to Prepare SERS Substrates by Physical Vapor Deposition
指導教授: 林鼎晸
DING-ZHENG LIN
口試委員: 陳品銓
PIN-CHUAN CHEN
陳奕帆
YIH-FAN CHEN
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 91
中文關鍵詞: 表面增強拉曼散射(SERS)高深寬比奈米結構物理氣相鍍膜微量檢測定量分析
外文關鍵詞: Surface Enhanced Raman Scattering, SERS, High Aspect Ratio Nanostructures, Physical Vapor Deposition, PVD, Trace Detection, Quantitative Analysis
相關次數: 點閱:484下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用一種具有柔性高深寬比的柱狀陣列仿生材料薄膜進行SERS基板製備,其優點為製備簡易、再現性高以及具有大面積製造潛力,這些關鍵特性對於未來的大規模生產至關重要。本研究主要通過使用物理氣相沉積方法—熱蒸鍍法與濺鍍法進行奈米結構基板的金屬化製程。並利用電子束蒸鍍法(E-gun evaporation)、濺鍍法(Sputtering)與間歇濺鍍(intermittent sputtering),調控出三種不同銀奈米粒子(Ag NPs)形貌的SERS基板。此三種基板的SERS訊號變異係數(CV)在4英吋直徑區域內皆小於15%。蒸鍍製程的基板具有良好的SERS效果,但塑膠基材容易裸露導致受到基板拉曼背景干擾。濺鍍法製程具有較佳的金屬覆膜特性,但增強因子不如預期。因此本研究採用間歇濺鍍的製程來改良上述的缺點,最終製作出訊背比(S/B ratio)大於1.06的SERS基板,並以其中製程最好的條件為間歇濺鍍(70nm)對污染物三聚氰胺(Melamine)進行微量檢測與定量分析,其濃度曲線的線性度(R2)為0.97,檢測限(LoD)為~5.6×10^-7M,SERS基板增強因子(EF)則是3.05×10^6。


    In this study, a flexible high-aspect-ratio pillar array biomimetic material film was used for SERS substrate preparation. The benefit of these substrates are easy fabrication process, high reproducibility, and great potential for large area fabrication, which are key parameters for mass production in the future. In this research, the physical vapor evaporation methods was used to perform the metallization process on nanostructured substrates, which are thermal evaporation and sputter. There are three kinds of silver nanoparticles (Ag NPs) decorated on SERS substrates by E-gun evaporation, sputtering, and intermittent sputtering method. The coefficients of variation (CV) of SERS signals for these three substrates were all less than 15% over a 4-inch diameter area.
    The substrate by E-gun evaporation method has great SERS effect, however, the drawback is the interference of SERS signal with background induced by exposure of polymer nanostructure template.The substrate by sputtering method has better step coverage of metal deposition, however, the enhancement factor is not as expected. Therefore, we proposed the intermittent sputtering method to solve these problems, and the SERS substrate with signal to background ratio larger than 1.06 was accomplished. The trace detection and quantitative analysis of the melamine contaminant was carried out by the SERS substrate of the best process condition (70nm Ag, intermittent sputtering). The linearity (R2) of the melamine concentration curve was 0.97, the limit of detection (LoD) was about 5.6×10^-7M, and the enhancement factor (EF) of SERS substrate was 3.05×10^6.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 論文架構 3 第二章 文獻回顧 5 2.1 分子振動光譜技術 5 2.1.1 紅外吸收光譜 5 2.1.2 拉曼光譜 6 2.2 表面增強拉曼光譜 7 2.2.1 表面電漿共振 7 2.2.2 微奈米結構SERS基板發展 9 2.2.3 SERS基板光譜量測與分析 13 2.3 鍍膜製程調控 14 2.3.1 鍍膜對於吸收光譜影響 15 2.3.2 鍍膜對於階梯覆蓋性影響 16 2.3.3 熱點的製造方式 17 第三章 研究方法 18 3.1 研究架構 18 3.1.1 蒸鍍與濺鍍之物理鍍膜差異 18 3.1.2 不同參數的濺鍍趨勢比較 18 3.1.3 間歇濺鍍製程參數比較 19 3.1.4 蒸鍍、濺鍍與濺鍍之間歇濺鍍光譜分析 19 3.1.5 基板保存方法 19 3.1.6模擬分析 19 3.2 實驗設備 20 3.2.1 雙電子槍蒸鍍系統B(Dual E-Gun Evaporation System B) 20 3.2.2 高真空濺鍍系統(Co-Sputter System) 21 3.3 實驗儀器 22 3.3.1 微型(積分球)光譜儀系統 22 3.3.2 橢圓偏光儀 23 3.3.3 手持式光功率能量計(Handheld Optical Power and Energy Meter) 24 3.3.4 顯微鏡拉曼光譜儀系統 25 3.3.5 高解析度場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope) 27 3.4 藥品配置 28 3.4.1 微量天平 28 3.4.2 電磁加熱攪拌器 29 3.5 基板量測方法 29 3.6 光譜分析方法 30 3.6.1 origin軟體扣除螢光背景 30 3.6.2 內標準法 31 3.6.3 空白限、檢測限與定量限 32 3.6.4 增強因子 33 3.7 FDTD模擬 33 第四章 結果與討論 34 4.1 不同物理鍍膜(蒸鍍與濺鍍)的差異 34 4.2 不同參數的濺鍍趨勢比較 39 4.2.1 濺鍍保存天數背景變化 39 4.2.2 不同濺鍍條件測試 41 4.3 間歇濺鍍製程參數比較 46 4.4 蒸鍍、濺鍍與間歇濺鍍光譜分析 49 4.4.1 製程調控與基板的變化 49 4.4.2 基板均勻度測試 51 4.4.3 濃度量測與定量分析 53 4.4.4 內標準法 57 4.5 基板保存方法 59 4.6 模擬分析 61 第五章 結論與未來展望 63 5.1 結論 63 5.2 未來展望 64 附錄A 65 附錄B 66 附錄C 68 附錄D 69 參考資料 72

    1. J. Jiang, Z. Xu, A. Ameen, F. Ding, G. Lin, and G. L. Liu, "Large-area, lithography-free, low-cost SERS sensor with good flexibility and high performance," Nanotechnology 27(38), 385205 (2016).
    2. M. A. Tahir, X. Zhang, H. Cheng, D. Xu, Y. Feng, G. Sui, H. Fu, V. K. Valev, L. Zhang, and J. Chen, "Klarite as a label-free SERS-based assay: a promising approach for atmospheric bioaerosol detection," The Analyst 145(1), 277–285 (2020).
    3. M. E. Hankus, D. N. Stratis-Cullum, and P. M. Pellegrino, "Surface enhanced Raman scattering (SERS)-based next generation commercially available substrate: physical characterization and biological application," in H. Mohseni, M. H. Agahi, and M. Razeghi, eds. (2011), p. 80990N.
    4. 伍秀菁, 汪若文, and 林美吟, eds., 儀器總覽-化學分析儀器 (黃文雄, 1998).
    5. T. T. X. Ong, E. W. Blanch, and O. A. H. Jones, "Surface Enhanced Raman Spectroscopy in environmental analysis, monitoring and assessment," Sci. Total Environ. 720, 137601 (2020).
    6. A. Arroyo-Cerezo, A. M. Jimenez-Carvelo, A. González-Casado, A. Koidis, and L. Cuadros-Rodríguez, "Deep (offset) non-invasive Raman spectroscopy for the evaluation of food and beverages – A review," LWT 149, 111822 (2021).
    7. Y. Xu, P. Zhong, A. Jiang, X. Shen, X. Li, Z. Xu, Y. Shen, Y. Sun, and H. Lei, "Raman spectroscopy coupled with chemometrics for food authentication: A review," TrAC Trends Anal. Chem. 131, 116017 (2020).
    8. D. Cui, L. Kong, Y. Wang, Y. Zhu, and C. Zhang, "In situ identification of environmental microorganisms with Raman spectroscopy," Environ. Sci. Ecotechnology 100187 (2022).
    9. H. Yilmaz, D. Yilmaz, I. C. Taskin, and M. Culha, "Pharmaceutical applications of a nanospectroscopic technique: Surface-enhanced Raman spectroscopy," Adv. Drug Deliv. Rev. 184, 114184 (2022).
    10. M. Bradley, "Introduction to FTIR and Raman Spectroscopy Theory and Practice," 31 (2017).
    11. M. Fleischmann, P. J. Hendra, and A. J. McQUILLAN, "RAMAN SPECTRA OF PYRIDZNE ADSORBED AT A SILVER ELECTRODE," Chem. Phys. Lett. 26(2), 4 (1974).
    12. T.-Y. Liu, H.-H. Wang, K.-T. Tsai, Y. Chen, Y.-H. Chen, Y.-C. Chao, H.-H. Chang, Y.-Y. Han, W.-N. Lian, C.-H. Lin, J.-K. Wang, and Y.-L. Wang, "A Nanotechnology Platform Based on Surface-enhanced Raman Spectroscopy for Rapid Detection of Microbes," 16(3), (2012).
    13. V. Yesudasu, H. S. Pradhan, and R. J. Pandya, "Recent progress in surface plasmon resonance based sensors: A comprehensive review," Heliyon 7(3), e06321 (2021).
    14. G. Soghra, B. Jamal, and M. Bahar, "Design and analysis of surface plasmon resonance based photonic crystal fiber sensor employing gold nanowires," Optik 260, 169026 (2022).
    15. H.-M. Kim, H.-J. Kim, S.-C. Yang, J.-H. Park, and S.-K. Lee, "Fiber optic localized surface plasmon resonance hydrogen sensor based on gold nanoparticles capped with palladium," J. Ind. Eng. Chem. S1226086X22002027 (2022).
    16. A. Philip and A. R. Kumar, "The performance enhancement of surface plasmon resonance optical sensors using nanomaterials: A review," Coord. Chem. Rev. 458, 214424 (2022).
    17. D. Z. Lin, Y. P. Chen, P. J. Jhuang, J. Y. Chu, J. T. Yeh, and J.-K. Wang, "Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates," 19(5), (2011).
    18. F. Pincella, Y. Song, T. Ochiai, K. Isozaki, K. Sakamoto, and K. Miki, "Square-centimeter-scale 2D-arrays of Au@Ag core–shell nanoparticles towards practical SERS substrates with enhancement factor of 10 7," Chem. Phys. Lett. 605–606, 115–120 (2014).
    19. L. Zhou, J. Yang, X. Wang, G. Song, F. Lu, L. You, and J. Li, "Ag nanoparticles decorated Ag@ZrO2 composite nanospheres as highly active SERS substrates for quantitative detection of hexavalent chromium in waste water," J. Mol. Liq. 319, 114158 (2020).
    20. Y. Xu, F. Y. H. Kutsanedzie, Md. M. Hassan, J. Zhu, H. Li, and Q. Chen, "Functionalized hollow Au@Ag nanoflower SERS matrix for pesticide sensing in food," Sens. Actuators B Chem. 324, 128718 (2020).
    21. S.-G. Park, C. Mun, M. Lee, T. Y. Jeon, H.-S. Shim, Y.-J. Lee, J.-D. Kwon, C. S. Kim, and D.-H. Kim, "3D Hybrid Plasmonic Nanomaterials for Highly Efficient Optical Absorbers and Sensors," Adv. Mater. 27(29), 4290–4295 (2015).
    22. H. Yang, X. Hao, J. Tang, W. Jin, C. Liu, H. Hou, X. Ji, and J. Hu, "Dual-functional porous copper films modulated via dynamic hydrogen bubble template for in situ SERS monitoring electrocatalytic reaction," Appl. Surf. Sci. 494, 731–739 (2019).
    23. T. D. Vu, P. K. Duy, and H. Chung, "Nickel foam–caged Ag-Au bimetallic nanostructure as a highly rugged and durable SERS substrate," Sens. Actuators B Chem. 282, 535–540 (2019).
    24. N. Nuntawong, M. Horprathum, P. Eiamchai, K. Wong-ek, V. Patthanasettakul, and P. Chindaudom, "Surface-enhanced Raman scattering substrate of silver nanoparticles depositing on AAO template fabricated by magnetron sputtering," Vacuum 84(12), 1415–1418 (2010).
    25. T.-Y. Chan, T.-Y. Liu, K.-S. Wang, K.-T. Tsai, Z.-X. Chen, Y.-C. Chang, Y.-Q. Tseng, C.-H. Wang, J.-K. Wang, and Y.-L. Wang, "SERS Detection of Biomolecules by Highly Sensitive and Reproducible Raman-Enhancing Nanoparticle Array," Nanoscale Res. Lett. 12(1), 344 (2017).
    26. Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, P. Jingyang, L. Yue, W. Wudeng, Y. Xuanyi, S. Qian, and X. Jingjun, "Fabrication of nanowire network AAO and its application in SERS," Nanoscale Res. Lett. 8(1), 495 (2013).
    27. Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, "Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs: AAO template-assisted fabrication, functionalization, and application in detection PCBs," J. Raman Spectrosc. 44(2), 240–246 (2013).
    28. L. Liu, F. Wu, D. Xu, N. Li, and N. Lu, "Space confined electroless deposition of silver nanoparticles for highly-uniform SERS detection," Sens. Actuators B Chem. 255, 1401–1406 (2018).
    29. Y. Sharma and A. Dhawan, "Plasmonic “nano-fingers on nanowires” as SERS substrates," Opt. Lett. 41(9), 2085 (2016).
    30. M. S. Schmidt, J. Hübner, and A. Boisen, "Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy," Adv. Mater. 24(10), OP11–OP18 (2012).
    31. B. Lee, D. Lin, C. Huang, and T. Yen, "A high‐performance multifunctional substrate of ultrathin‐layer chromatography ( UTLC ) and surface‐enhanced R aman scattering ( SERS ) for rapid biochemical mixture screening," J. Raman Spectrosc. 49(12), 1920–1927 (2018).
    32. Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, "Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing," Nanoscale Res. Lett. 8(1), 437 (2013).
    33. P. R. Stoddart, P. J. Cadusch, T. M. Boyce, R. M. Erasmus, and J. D. Comins, "Optical properties of chitin: surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings," Nanotechnology 17(3), 680–686 (2006).
    34. S.-H. Hong, J. Hwang, and H. Lee, "Replication of cicada wing’s nano-patterns by hot embossing and UV nanoimprinting," Nanotechnology 20(38), 385303 (2009).
    35. S. Juneja and J. Bhattacharya, "Coffee ring effect assisted improved S. aureus screening on a physically restrained gold nanoflower enriched SERS substrate," Colloids Surf. B Biointerfaces 182, 110349 (2019).
    36. J. Liu, Z. Hong, W. Yang, C. Liu, Z. Lu, L. Wu, M. F. Foda, Z. Yang, H. Han, and Y. Zhao, "Bacteria Inspired Internal Standard SERS Substrate for Quantitative Detection," ACS Appl. Bio Mater. 4(3), 2009–2019 (2021).
    37. Y. Fleger and M. Rosenbluh, "Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles," Res. Lett. Opt. 2009, 1–5 (2009).
    38. "Moth eye-type antireflective film MOSMITETM Online exhibition | Products | Mitsubishi Chemical Corporation," https://www.m-chemical.co.jp/en/products/departments/mcc/ams/tech/1209994_7578.html.
    39. M. Kobayashi, Y. Katori, M. Yamaguchi, M. Shimojo, and K. Kajikawa, "Broadband light absorber of gold-coated moth-eye film," Opt. Mater. Express 9(9), 3744 (2019).
    40. Y. Nakamura, M. Toma, and K. Kajikawa, "A visible and near-infrared broadband light absorber of cone-shaped metallic cavities," Appl. Phys. Express 13(6), 062001 (2020).
    41. H. Cansizoglu, M. Yurukcu, M. F. Cansizoglu, and T. Karabacak, "Investigation of physical vapor deposition techniques of conformal shell coating for core/shell structures by Monte Carlo simulations," Thin Solid Films 583, 122–128 (2015).
    42. T. Karabacak and T.-M. Lu, "Enhanced step coverage by oblique angle physical vapor deposition," J. Appl. Phys. 97(12), 124504 (2005).
    43. F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, and J. Chen, "Hierarchical Nanogaps within Bioscaffold Arrays as a High-Performance SERS Substrate for Animal Virus Biosensing," ACS Appl. Mater. Interfaces 6(9), 6281–6289 (2014).
    44. D. A. Armbruster and T. Pry, "Limit of Blank, Limit of Detection and Limit of Quantitation," 4 (2008).
    45. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, "Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study," J. Phys. Chem. C 111(37), 13794–13803 (2007).

    無法下載圖示 全文公開日期 2026/08/29 (校內網路)
    全文公開日期 2026/08/29 (校外網路)
    全文公開日期 2026/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE