簡易檢索 / 詳目顯示

研究生: 許新城
Hsin-Cheng Hsu
論文名稱: 氧化石墨烯奈米複合材料光觸媒於二氧化碳還原之應用
Graphene Oxide Based Photocatalyst for CO2 Reduction
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 林麗瓊
Li-Chyong Chen
陳貴賢
Kuei-Hsien Chen
黃炳照
Bing-Joe Hwang
吳紀聖
Jeffrey Chi-Sheng Wu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 123
中文關鍵詞: 光觸媒二氧化碳還原氧化石墨烯
外文關鍵詞: photocatalyst, CO2 reduction, graphene oxide
相關次數: 點閱:415下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

人工光合作用被視為是能夠解決地球暖化與能源需求增加的方法之一,如同自然界光合作用,藉由光催化的方式在光觸媒上進行二氧化碳還原成碳氫化合物,如甲醇等有用的燃料,可同時減少二氧化碳及解決能源需求一直增加的問題。本研究主要探討以氧化石墨烯成為光觸媒進行二氧化碳轉換的優異性,並利用X-ray繞射分析、掃描式電子顯微鏡、高解析穿透式電子顯微鏡、紫外-可見光光譜儀、光電子光譜儀、原子力顯微鏡、紫外光電子能譜儀和電化學循環伏安及線性伏安法了解光觸媒特性。
光觸媒效能部分,首先以修改式Hummer’s氧化石墨烯(Hummer’s GO, GO-1)及改良式氧化石墨烯(Improved GO, iGO),了解不同的氧化參數造成二氧化碳光轉換效率的影響,在實驗上的參數包括在GO-1製程中加入的過錳酸鉀含量,以及在iGO製程中加入的磷酸含量。不同操作參數之結果顯示,在GO-1製程中當過錳酸鉀量增加,能隙及氧化程度將增加,但隨著氧化石墨烯的缺陷增加,光催化還原產率也下降,而在iGO製程中隨著量增加,能隙及氧化程度有所增加,但磷酸在合成過程中,有效的保護氧化石墨烯表面,使缺陷減少,光催化還原產率也隨之增加,但當氧化過程中加入過多磷酸反而降低能隙及氧化程度,產率也將下降,磷酸的添加可以避免氧化石墨烯基面形成C=O之缺陷,所以iGO製程相對於HGO製程可能有較少的缺陷形成在氧化石墨烯基面上,並在三倍磷酸添加的條件下(GO-3),將有最較少的缺陷,進而幫助還原反應,維持穩定性。以二氧化碳及水氣連續通入不鏽鋼之反應器中,利用300瓦之鹵素燈照射在光觸媒上,再經由自動注射系統注入氣相層析儀-火焰離子偵測器(Gas Chromatography/Flame Ionization Detector, GC/FID)偵測產物,其中,甲醇產率最高將可達到0.172 μmol g-1-cat hr-1,產率相對於商用二氧化鈦 (Degussa P25)有近五倍的提升。為進一步增加其效能,吾人以一步合成的水熱法,藉由聯銨輔助還原二硫化鉬合成在氧化石墨烯奈米表面上,使增加可見光驅動活性,以作為光觸媒複合材料,因而實驗中測得之各產物為甲醇、乙醇及乙醛,二氧化碳轉換成碳氫化合物的總產率達1.8 μmol g-cat-1 hr-1,為iGO產率的10倍、為P25的45倍,顯示出二硫化鉬/氧化石墨烯奈米複合材料光觸媒在催化二氧化碳還原的傑出表現。


Artificial photosynthesis is one of the solutions to solve global warming and mitigate the rising demands of energy consumption. Photocatalytic conversion of carbon dioxide (CO2) to hydrocarbons such as methanol makes possible simultaneous solar energy harvesting and CO2 reduction, resulting in solution for both the energy demands and environmental problems. This work describes a promising photocatalyst based on improved graphene oxides (iGOs), which have high photocatalytic conversion efficiency of CO2 to hydrocarbon fuels.
Improved Hummer’s method has been applied to synthesize the GO based photocatalyst for the enhanced catalytic activity. The photocatalytic CO2 to methanol conversion rate on the pristine improved graphene oxide is 0.172 μmole g-1-cat. h-1 under visible light, which is four-fold higher than the pure TiO2 (P25). On the other hand, we have also synthesized a composite catalyst based on molybdenum disulfide-iGO system.The MoS2 nanosheet decorated improved graphene oxide (iGO) hybrid nanostructures are fabricated by a facial one-step hydrazine-assisted hydrothermal method. The photophysical properties of the synthesized photocatalysts have been investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV-Vis spectrometer, Ultraviolet photoelectron spectroscopy (UPS), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and X-ray photoelectron spectroscopy (XPS). Enhanced visible light-driven activity for the CO2 photoreduction to solar fuel has been achieved. The average apparent CO2 reduction to solar fuel formation rate of MoS2 nanosheet decorated iGO composite is more than 10 times higher than the pristine iGO; or 40 times that of TiO2 (P25). The MoS2 nanosheet decorated iGO composite nanostructures makes an outstanding contribution to the excellent photocatalytic CO2 reduction.

摘要 I Abstract III Acknowledgement V Contents VII Figure Lists IX Table Lists XIV Chapter 1 Introduction 1 1-1 Globe Warming and Greenhouse Gas 1 1-2 CO2 Utilization and Strategies 4 1-3 TiO2 and Other Semiconductors 7 1-4 Thermodynamics and Initial Steps of CO2 Activation and Further Conversion 16 1-5 Graphene-based Semiconductor Photocatalysts 19 1-6 Challenges for CO2 Photoreduction 24 Chapter 2 Motivation 29 2-1 Photocatalytic Reduction of CO2 29 2-2 Graphene Oxide for CO2 Photoreduction 30 2-3 MoS2 Decorated Graphene Oxide Nanocomposites as a Photocatalyst for CO2 Reduction 32 Chapter 3 Experimental and Instrumental Setup 35 3-1 Materials 35 3-2 Synthesis of Hummers Graphene Oxide (HGO) 35 3-3 Synthesis of Improved Graphene Oxide 36 3-4 Synthesis of MoS2 Nanosheet Decorated iGO Composites 37 3-5 Instrumentations 39 3-5-1 X-ray Diffraction Measurement (XRD) 39 3-5-2 Field Emission Scanning Electron Microscopy (SEM) 40 3-5-3 High-Resolution Transmission Electron Microscopy (TEM) 42 3-5-4 UV-visible Absorption Spectrophotometer 43 3-5-5 X-ray Photoelectron Spectroscopy 45 3-5-6 Ultraviolet Photoelectron Spectroscopy (UPS) 46 3-5-7 Electrochemical Instrument (Solartron 1280C) 47 3-5-8 Gas Chromatography (GC) 49 3-5-9 Gas Chromatography and Mass Spectroscopy (GC/MS) 50 3-5-10 Atomic Force Microscopy 51 3-6 Photocatalytic CO2 Reduction Experiment 52 Chapter 4 Graphene Oxide Photocatalyst 55 4-1 Synthesis and Characterization of Graphene Oxide 55 4-2 Photocatalytic Study of Graphene Oxide 61 4-3 Isotope Tracer Analyses of GOs with 13CO2 67 Chapter 5 Molybdenum Disulfide Decorated Graphene Oxide Photocatalysts 69 5-1 Synthesis of MoS2/iGO Nanocomposites 69 5-2 Characterization of MoS2/iGO Nanocomposites 70 5-3 The Elemental Compositions of MoS2/iGO Nanocomposites 78 5-4 Absorption Spectra of MoS2/iGO Nanocomposites 84 5-5 Photocatalytic Study of MoS2/iGO Nanocomposites 86 5-6 Band Alignment of MoS2/iGO Nanocomposites 90 Chapter 6 Conclusion 98 Reference 99

[1] W. Fan, Q. Zhang, Y. Wang, Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Physical Chemistry Chemical Physics, (2013).
[2] A. Yamasaki, An Overview of CO2 Mitigation Options for Global Warming—Emphasizing CO2 Sequestration Options. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 36 (2003) 361-375.
[3] E.J. Maginn, What to Do with CO2. The Journal of Physical Chemistry Letters, 1 (2010) 3478-3479.
[4] M. Mikkelsen, M. Jorgensen, F.C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 3 (2010) 43-81.
[5] M. Aresta, A. Dibenedetto, Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Transactions, (2007) 2975-2992.
[6] J.P. Smol, Climate Change: A planet in flux. Nature, 483 (2012) S12-S15.
[7] M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chemical Reviews, 114 (2014) 1709-1742.
[8] H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences, 20 (2008) 14-27.
[9] R.E. Morris, P.S. Wheatley, Gas Storage in Nanoporous Materials. Angewandte Chemie International Edition, 47 (2008) 4966-4981.
[10] D. Aaron, C. Tsouris, Separation of CO2 from Flue Gas: A Review. Separation Science and Technology, 40 (2005) 321-348.
[11] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277 (1979) 637-638.
[12] S.S. Tan, L. Zou, E. Hu, Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catalysis Today, 115 (2006) 269-273.
[13] S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angewandte Chemie International Edition, 52 (2013) 7372-7408.
[14] G. Centi, S. Perathoner, Towards Solar Fuels from Water and CO2. ChemSusChem, 3 (2010) 195-208.
[15] G. Aydin, I. Karakurt, K. Aydiner, Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety. Energy Policy, 38 (2010) 5072-5080.
[16] Y. Izumi, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordination Chemistry Reviews, 257 (2013) 171-186.
[17] P. Usubharatana, D. McMartin, A. Veawab, P. Tontiwachwuthikul, Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams. Industrial & Engineering Chemistry Research, 45 (2006) 2558-2568.
[18] M. Tahir, N.S. Amin, Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Conversion and Management, 76 (2013) 194-214.
[19] W.C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S.M. Haile, A. Steinfeld, High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria. Science, 330 (2010) 1797-1801.
[20] R.D. Richardson, E.J. Holland, B.K. Carpenter, A renewable amine for photochemical reduction of CO2. Nat Chem, 3 (2011) 301-303.
[21] W.-H. Lee, C.-H. Liao, M.-F. Tsai, C.-W. Huang, J.C.S. Wu, A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis. Applied Catalysis B: Environmental, 132-133 (2013) 445-451.
[22] S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano, 4 (2010) 1259-1278.
[23] H. Zhou, Y. Qu, T. Zeid, X. Duan, Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy & Environmental Science, 5 (2012) 6732-6743.
[24] W. Tu, Y. Zhou, Z. Zou, Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Advanced Materials, (2014) n/a-n/a.
[25] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95 (1995) 69-96.
[26] H. Xu, S. Ouyang, P. Li, T. Kako, J. Ye, High-active anatase TiO2 nanosheets exposed with 95% {100} facets toward efficient H2 evolution and CO2 photoreduction. ACS Applied Materials and Interfaces, 5 (2013) 1348-1354.
[27] Y. Wang, B. Li, C. Zhang, L. Cui, S. Kang, X. Li, L. Zhou, Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Applied Catalysis B: Environmental, 130-131 (2013) 277-284.
[28] J. Nunez, V.A. De La Pena O'Shea, P. Jana, J.M. Coronado, D.P. Serrano, Effect of copper on the performance of ZnO and ZnO1-xN x oxides as CO2 photoreduction catalysts. Catalysis Today, 209 (2013) 21-27.
[29] Y. Zhang, Y. Tang, X. Liu, Z. Dong, H.H. Hng, Z. Chen, T.C. Sum, X. Chen, Three-dimensional CdS-titanate composite nanomaterials for enhanced visible-light-driven hydrogen evolution. Small, 9 (2013) 996-1002.
[30] R.H. Coridan, M. Shaner, C. Wiggenhorn, B.S. Brunschwig, N.S. Lewis, Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes. Journal of Physical Chemistry C, 117 (2013) 6949-6957.
[31] P. Praus, O. Kozak, K. Koči, A. Panaček, R. Dvorsky, CdS nanoparticles deposited on montmorillonite: Preparation, characterization and application for photoreduction of carbon dioxide. Journal of Colloid and Interface Science, 360 (2011) 574-579.
[32] D. Finkelstein-Shapiro, S.H. Petrosko, N.M. Dimitrijevic, D. Gosztola, K.A. Gray, T. Rajh, P. Tarakeshwar, V. Mujica, CO2 preactivation in photoinduced reduction via surface functionalization of TiO2 nanoparticles. Journal of Physical Chemistry Letters, 4 (2013) 475-479.
[33] B. Michalkiewicz, J. Majewska, G. Kadzioka, K. Bubacz, S. Mozia, A.W. Morawski, Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. Journal of CO2 Utilization, 5 (2014) 47-52.
[34] S. Sing Tan, L. Zou, E. Hu, Photosynthesis of hydrogen and methane as key components for clean energy system. Science and Technology of Advanced Materials, 8 (2007) 89-92.
[35] D. Liu, Y. Fernandez, O. Ola, S. Mackintosh, M. Maroto-Valer, C.M.A. Parlett, A.F. Lee, J.C.S. Wu, On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catalysis Communications, 25 (2012) 78-82.
[36] C. Wang, R.L. Thompson, P. Ohodnicki, J. Baltrus, C. Matranga, Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. Journal of Materials Chemistry, 21 (2011) 13452.
[37] B. Chai, T. Peng, P. Zeng, J. Mao, Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficient photocatalytic hydrogen production under visible light. Journal of Materials Chemistry, 21 (2011) 14587.
[38] F. Lakadamyali, E. Reisner, Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle. Chemical Communications, 47 (2011) 1695.
[39] O.K. Varghese, M. Paulose, T.J. LaTempa, C.A. Grimes, High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. Nano Letters, 9 (2009) 731-737.
[40] V. Singh, I.J.C. Beltran, J.C. Ribot, P. Nagpal, Photocatalysis Deconstructed: Design of a New Selective Catalyst for Artificial Photosynthesis. Nano Letters, 14 (2014) 597-603.
[41] K. Adachi, K. Ohta, T. Mizuno, Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy, 53 (1994) 187-190.
[42] M. Subrahmanyam, S. Kaneco, N. Alonso-Vante, A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Applied Catalysis B: Environmental, 23 (1999) 169-174.
[43] V.P. Indrakanti, J.D. Kubicki, H.H. Schobert, Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science, 2 (2009) 745-758.
[44] J.C.S. Wu, H.-M. Lin, Photo reduction of CO2 to methanol via TiO2 photocatalyst. International Journal of Photoenergy, 7 (2005).
[45] T.W. Woolerton, S. Sheard, E. Pierce, S.W. Ragsdale, F.A. Armstrong, CO2 photoreduction at enzyme-modified metal oxide nanoparticles. Energy & Environmental Science, 4 (2011) 2393.
[46] T.W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S.W. Ragsdale, F.A. Armstrong, Efficient and Clean Photoreduction of CO2 to CO by Enzyme-Modified TiO2 Nanoparticles Using Visible Light. Journal of the American Chemical Society, 132 (2010) 2132-2133.
[47] C.-C. Yang, J. Vernimmen, V. Meynen, P. Cool, G. Mul, Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15. Journal of Catalysis, 284 (2011) 1-8.
[48] K. Iizuka, T. Wato, Y. Miseki, K. Saito, A. Kudo, Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) Using Water as a Reducing Reagent. Journal of the American Chemical Society, 133 (2011) 20863-20868.
[49] X. Feng, J.D. Sloppy, T.J. LaTempa, M. Paulose, S. Komarneni, N. Bao, C.A. Grimes, Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: application to the photocatalytic reduction of carbon dioxide. Journal of Materials Chemistry, 21 (2011) 13429-13433.
[50] B. Aurian-Blajeni, M. Halmann, J. Manassen, Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials. Solar Energy, 25 (1980) 165-170.
[51] Q.-H. Zhang, W.-D. Han, Y.-J. Hong, J.-G. Yu, Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catalysis Today, 148 (2009) 335-340.
[52] L. Qiu-ye, Z. Lan-lan, L. Chen, C. Yu-hui, W. Xiao-dong, Y. Jian-jun, Photocatalytic Reduction of CO2 to Methane on Pt/TiO2 Nanosheet Porous Film. Advances in Condensed Matter Physics, 2014 (2014) 6.
[53] C. Wang, R.L. Thompson, J. Baltrus, C. Matranga, Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts. The Journal of Physical Chemistry Letters, 1 (2009) 48-53.
[54] N. Ulagappan, H. Frei, Mechanistic Study of CO2 Photoreduction in Ti Silicalite Molecular Sieve by FT-IR Spectroscopy. The Journal of Physical Chemistry A, 104 (2000) 7834-7839.
[55] C.-C. Yang, Y.-H. Yu, B. van der Linden, J.C.S. Wu, G. Mul, Artificial Photosynthesis over Crystalline TiO2-Based Catalysts: Fact or Fiction? Journal of the American Chemical Society, 132 (2010) 8398-8406.
[56] H. Tsuneoka, K. Teramura, T. Shishido, T. Tanaka, Adsorbed Species of CO2 and H2 on Ga2O3 for the Photocatalytic Reduction of CO2. The Journal of Physical Chemistry C, 114 (2010) 8892-8898.
[57] H.-a. Park, J.H. Choi, K.M. Choi, D.K. Lee, J.K. Kang, Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. Journal of Materials Chemistry, 22 (2012) 5304-5307.
[58] M. Halmann, M. Ulman, B. Aurian-Blajeni, Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide. Solar Energy, 31 (1983) 429-431.
[59] T.-V. Nguyen, J.C.S. Wu, C.-H. Chiou, Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catalysis Communications, 9 (2008) 2073-2076.
[60] S. Kuwabata, H. Uchida, A. Ogawa, S. Hirao, H. Yoneyama, Selective photoreduction of carbon dioxide to methanol on titanium dioxide photocatalysts in propylene carbonate solution. Journal of the Chemical Society, Chemical Communications, (1995) 829-830.
[61] S. Kaneco, Y. Shimizu, K. Ohta, T. Mizuno, Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. Journal of Photochemistry and Photobiology A: Chemistry, 115 (1998) 223-226.
[62] K. Koči, L. Obalova, L. Matějova, D. Placha, Z. Lacny, J. Jirkovsky, O. Šolcova, Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 89 (2009) 494-502.
[63] K. Koči, K. Matějů, L. Obalova, S. Krejčikova, Z. Lacny, D. Placha, L. Čapek, A. Hospodkova, O. Šolcova, Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 96 (2010) 239-244.
[64] L. Liu, H. Zhao, J.M. Andino, Y. Li, Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis, 2 (2012) 1817-1828.
[65] P. Pathak, M.J. Meziani, Y. Li, L.T. Cureton, Y.-P. Sun, Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chemical Communications, (2004) 1234-1235.
[66] B. Vijayan, N.M. Dimitrijevic, T. Rajh, K. Gray, Effect of Calcination Temperature on the Photocatalytic Reduction and Oxidation Processes of Hydrothermally Synthesized Titania Nanotubes. The Journal of Physical Chemistry C, 114 (2010) 12994-13002.
[67] Q. Liu, Y. Zhou, W. Tu, S. Yan, Z. Zou, Solution-Chemical Route to Generalized Synthesis of Metal Germanate Nanowires with Room-Temperature, Light-Driven Hydrogenation Activity of CO2 into Renewable Hydrocarbon Fuels. Inorganic Chemistry, 53 (2013) 359-364.
[68] X. Li, Z. Zhuang, W. Li, H. Pan, Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Applied Catalysis A: General, 429–430 (2012) 31-38.
[69] N. Zhang, S. Ouyang, P. Li, Y. Zhang, G. Xi, T. Kako, J. Ye, Ion-exchange synthesis of a micro/mesoporous Zn2GeO4 photocatalyst at room temperature for photoreduction of CO2. Chemical Communications, 47 (2011) 2041-2043.
[70] F. Solymosi, The bonding, structure and reactions of CO2 adsorbed on clean and promoted metal surfaces. Journal of Molecular Catalysis, 65 (1991) 337-358.
[71] D.H. Gibson, Carbon dioxide coordination chemistry: metal complexes and surface-bound species. What relationships? Coordination Chemistry Reviews, 185–186 (1999) 335-355.
[72] H.J. Freund, M.W. Roberts, Surface chemistry of carbon dioxide. Surface Science Reports, 25 (1996) 225-273.
[73] T.M. Lowry, Valence and the structure of atoms and molecules. By Prof. G. N. Lewis. Pp. 172. American Chemical Monograph Series. New York: The Chemical Catalog Co., Inc., 1923. Price $3. Journal of the Society of Chemical Industry, 43 (1924) 17-17.
[74] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science, 306 (2004) 666-669.
[75] K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature, 490 (2012) 192-200.
[76] V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, J. Zhang, A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy & Environmental Science, 7 (2014) 1564-1596.
[77] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45 (2007) 1558-1565.
[78] H.-J. Shin, K.K. Kim, A. Benayad, S.-M. Yoon, H.K. Park, I.-S. Jung, M.H. Jin, H.-K. Jeong, J.M. Kim, J.-Y. Choi, Y.H. Lee, Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials, 19 (2009) 1987-1992.
[79] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat Nano, 4 (2009) 217-224.
[80] K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat Chem, 2 (2010) 1015-1024.
[81] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chemical Society Reviews, 39 (2010) 228-240.
[82] G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.S. Chen, C.-W. Chen, M. Chhowalla, Blue Photoluminescence from Chemically Derived Graphene Oxide. Advanced Materials, 22 (2010) 505-509.
[83] G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, Insulator to Semimetal Transition in Graphene Oxide. The Journal of Physical Chemistry C, 113 (2009) 15768-15771.
[84] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. Journal of the American Chemical Society, 133 (2011) 10878-10884.
[85] Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chemical Society Reviews, 41 (2012) 782-796.
[86] I.V. Lightcap, T.H. Kosel, P.V. Kamat, Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide. Nano Letters, 10 (2010) 577-583.
[87] H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano, 4 (2009) 380-386.
[88] Q. Xiang, J. Yu, M. Jaroniec, Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale, 3 (2011) 3670-3678.
[89] Q. Xiang, J. Yu, M. Jaroniec, Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites. The Journal of Physical Chemistry C, 115 (2011) 7355-7363.
[90] Q. Xiang, J. Yu, M. Jaroniec, Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles. Journal of the American Chemical Society, 134 (2012) 6575-6578.
[91] T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang, H. Teng, Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 20 (2010) 2255-2262.
[92] RadisavljevicB, RadenovicA, BrivioJ, GiacomettiV, KisA, Single-layer MoS2 transistors. Nat Nano, 6 (2011) 147-150.
[93] K.K. Kam, B.A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. The Journal of Physical Chemistry, 86 (1982) 463-467.
[94] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters, 105 (2010) 136805.
[95] Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes. Science, 267 (1995) 222-225.
[96] M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Levy, D. Mihailovic, Self-Assembly of Subnanometer-Diameter Single-Wall MoS2 Nanotubes. Science, 292 (2001) 479-481.
[97] X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation. Journal of the American Chemical Society, 130 (2008) 7176-7177.
[98] F.A. Frame, F.E. Osterloh, CdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light. The Journal of Physical Chemistry C, 114 (2010) 10628-10633.
[99] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 133 (2011) 7296-7299.
[100] K.H. Hu, X.G. Hu, Y.F. Xu, J.D. Sun, Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange. Journal of Materials Science, 45 (2010) 2640-2648.
[101] L. Liu, W. Fan, X. Zhao, H. Sun, P. Li, L. Sun, Surface Dependence of CO2 Adsorption on Zn2GeO4. Langmuir, 28 (2012) 10415-10424.
[102] P.-Y. Liou, S.-C. Chen, J.C.S. Wu, D. Liu, S. Mackintosh, M. Maroto-Valer, R. Linforth, Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy & Environmental Science, 4 (2011) 1487-1494.
[103] T. Wang, L. Yang, X. Du, Y. Yang, Numerical investigation on CO2 photocatalytic reduction in optical fiber monolith reactor. Energy Conversion and Management, 65 (2013) 299-307.
[104] H.-C. Hsu, I. Shown, H.-Y. Wei, Y.-C. Chang, H.-Y. Du, Y.-G. Lin, C.-A. Tseng, C.-H. Wang, L.-C. Chen, Y.-C. Lin, K.-H. Chen, Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale, 5 (2013) 262.
[105] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Thin-film particles of graphite oxide 1:: High-yield synthesis and flexibility of the particles. Carbon, 42 (2004) 2929-2937.
[106] W. Alhalasah, R. Holze, Electrochemical bandgaps of a series of poly-3-p-phenylthiophenes. J Solid State Electrochem, 11 (2007) 1605-1612.
[107] A.L. Higginbotham, D.V. Kosynkin, A. Sinitskii, Z. Sun, J.M. Tour, Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano, 4 (2010) 2059-2069.
[108] C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Advanced Functional Materials, 19 (2009) 2577-2583.
[109] B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jorgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Norskov, Biomimetic Hydrogen Evolution:  MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. Journal of the American Chemical Society, 127 (2005) 5308-5309.
[110] V.O. Koroteev, L.G. Bulusheva, I.P. Asanov, E.V. Shlyakhova, D.V. Vyalikh, A.V. Okotrub, Charge Transfer in the MoS2/Carbon Nanotube Composite. The Journal of Physical Chemistry C, 115 (2011) 21199-21204.
[111] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from Chemically Exfoliated MoS2. Nano Letters, 11 (2011) 5111-5116.
[112] C.A. Papageorgopoulos, W. Jaegermann, Li intercalation across and along the van der Waals surfaces of MoS2(0001). Surface Science, 338 (1995) 83-93.
[113] L.F. Mattheiss, Energy Bands for 2H-NbSe2 and 2H-MoS2. Physical Review Letters, 30 (1973) 784-787.
[114] R.V. Kasowski, Band Structure of MoS2 and NbS2. Physical Review Letters, 30 (1973) 1175-1178.
[115] L.A. King, W. Zhao, M. Chhowalla, D.J. Riley, G. Eda, Photoelectrochemical properties of chemically exfoliated MoS2. Journal of Materials Chemistry A, 1 (2013) 8935.
[116] T. Li, G. Galli, Electronic Properties of MoS2 Nanoparticles. The Journal of Physical Chemistry C, 111 (2007) 16192-16196.
[117] J.-M. Yun, Y.-J. Noh, J.-S. Yeo, Y.-J. Go, S.-I. Na, H.-G. Jeong, J. Kim, S. Lee, S.-S. Kim, H.Y. Koo, T.-W. Kim, D.-Y. Kim, Efficient work-function engineering of solution-processed MoS2 thin-films for novel hole and electron transport layers leading to high-performance polymer solar cells. Journal of Materials Chemistry C, 1 (2013) 3777.
[118] O. Ochedowski, K. Marinov, N. Scheuschner, A. Poloczek, B.K. Bussmann, J. Maultzsch, M. Schleberger, Effect of contaminations and surface preparation on the work function of single layer MoS2. Beilstein Journal of Nanotechnology, 5 (2014) 291-297.
[119] P.V. Kumar, M. Bernardi, J.C. Grossman, The Impact of Functionalization on the Stability, Work Function, and Photoluminescence of Reduced Graphene Oxide. ACS Nano, 7 (2013) 1638-1645.
[120] E. Barton Cole, P.S. Lakkaraju, D.M. Rampulla, A.J. Morris, E. Abelev, A.B. Bocarsly, Using a One-Electron Shuttle for the Multielectron Reduction of CO2 to Methanol: Kinetic, Mechanistic, and Structural Insights. Journal of the American Chemical Society, 132 (2010) 11539-11551.

無法下載圖示 全文公開日期 2019/07/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE