簡易檢索 / 詳目顯示

研究生: 林宇志
Yu-Chin Lin
論文名稱: 碳氮化硼與超奈米鑽石於矽基板複合結構之超級電容特性研究
The Studies of Boron Carbon Nitrides with Ultra-nanocrystalline Diamonds on Silicon-Based Hybrid Nanostructures for Supercapacitor Properties
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 張守進
Shoou-Jinn Chang
周賢鎧
Shyankay Jou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 262
中文關鍵詞: 矽奈米線超奈米鑽石碳氮化硼超級電容器
外文關鍵詞: Silicon nanowires, Ultra-nanocrystalline diamond, Boron Carbon Nitride, Supercapacitor
相關次數: 點閱:362下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討了超奈米鑽石等寬能隙材料複合於不同結構之矽基板上作為超級電容器之應用,並探討退火之後處理對此結構之影響。內文將分為三個部分,第一部分提升超奈米鑽石複合於矽基板上之均勻性與密度,並探討不同溫度之退火後處理對超奈米鑽石於矽基板結構之影響;第二部分將h-BN溶液分別以10、30μL滴在超奈米鑽石於矽基板結構,利用微波電漿成長碳氮化硼,探討不同溫度之退火後處理對碳氮化硼複合超奈米鑽石於矽基板結構之特性影響;第三部分則是將h-BN+Daimond溶液分別以10、30μL滴在超奈米鑽石於矽基板結構,利用微波電漿成長碳氮化硼,探討不同溫度之退火後處理對碳氮化硼複合超奈米鑽石於矽基板結構之特性影響:Type I: N-UNCD / N-Si、Type II: BCN-(N-UNCD) / N-Si、Type III: BCN / N-UNCD / N-Si
本研究發現,使用微波電漿輔助化學氣相沉積系統對碳布基板進行電漿處理,可以有效提升超奈米鑽石於矽基板之均勻性,亦提升其作為超級電容器之重量比電容值,並將成長完之超奈米鑽石於矽基板利用氮氣退火後處理,可發現電容值從6.58提升至73.37(F/g),其充放電循環穩定性提升至145%,當超奈米鑽石成長於矽奈米線經氮氣退火處理後,可發現電容值從42.75提升至78.85(F/g),其充放電循環穩定性提升至247%。
此外,研究亦發現不同溫度之退火後處理對碳氮化硼複合超奈米鑽石於矽奈米線結構,其充放電循環穩定性提升至275%--搭配FE-SEM、XRD和XPS之分析可推測氮氣退火後,使B-C-N之比例改變,其因在退火過程中保護下層之EDLC結構,其不被退火之高溫破壞,同時其自身亦形成結晶性,並與矽奈米線更好的複合,最終在EDLC和PC (Pseudocapacitor) 之協同作用下顯著提升了其電容值;最後,其重量比電容值在經過3000次循環充放電後提升為初始值的275%,表明此種BCN / N-UNCD / SiNWs新型複合結構具有優異之循環穩定性。


In this study, we combined two materials: nanocrystalline diamond (UNCD) and Boron Carbon Nitride (BCN) films on silicon substrate, forming three types of novel composite structures: (i) N-UNCD/N -Si, (ii) BCN-(N-UNCD) / N-Si and (iii) BCN / N-UNCD / N-Si for supercapacitors. This study found that the microwave plasma-assisted chemical vapor deposition process can effectively improve the uniformity of ultra-nanodiamonds on silicon substrates, and also improve the gravimetric capacitance value of supercapacitors. After annealing the ultra-nanodiamond grown(25 mins) on the silicon substrate with nitrogen for 800 C, it can be found that the capacitance value is increased from 6.58 to 73.37 (F/g), and the charge-discharge cycle stability is improved to 145%. When ultra-nanodiamond grown(25 mins) on silicon nanowires(SiNWs), which was annealed with nitrogen, and the capacitance value was increased from 42.75 to 78.85 (F/g), and its charge-discharge cycle stability was improved significantly to 247%.
In addition, it is also found that the capacitance value increased from 13.98 to 34.75 (F/g) and the charge-discharge cycle stability of the carbon-boron nitride composite nanodiamond in the silicon nanowire structure(BCN/N-UNCD/SiNWs) increased up to 275% after annealing at 800 C. With the analysis of FE-SEM, XRD and XPS, it can be suggested that the nitrogen annealing treatment changes the ratio of B-C-N, which protects the underlying EDLC structure during the annealing process, which is not damaged by the high temperature of annealing, and also forms better crystallinity, and better compounded with silicon nanowires, and finally significantly improved its capacitance value under the synergistic effect of EDLC and PC (Pseudocapacito). This studies indicates that the composite structure of BCN/N-UNCD/SiNWs possesses reasonable capacitance properties with high cycling stability which provides an novel supercapacitor application in the electronic industry .

中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XX 第一章 緒論 1.1 前言 1 1.2 研究動機 3 第二章 文獻探討 2.1 奈米鑽石材料(Nanocrystalline diamond )之特性簡介 5 2.1.1奈米鑽石材料概述 5 2.1.2結晶鑽石之尺寸分類 7 2.1.3超奈米鑽石成長機制 9 2.2碳氮化硼( Boron Carbon Nitride , BCN )材料之特性 10 2.2.1碳氮化硼概述 10 2.2.2碳氮化硼之型態與結構 11 2.3 超級電容器之種類與機制 14 2.3.1超級電容器(Supercapacitor, SC)概述 14 2.3.2電雙層電容(Electrical Double Layer Capacitor, EDLC) 16 第三章 實驗方法 3.1 實驗設計 19 3.2 製備之材料介紹 22 3.3 基板之清洗 23 3.4 矽奈米線基板製備 25 3.5 微波電漿化學氣相沉積法成長超奈米鑽石 26 3.6 微波電漿化學氣相沉積法成長碳氮化硼 27 3.7 管式高溫爐之後處理 30 3.7.1氮氣(N2)退火後處理 30 3.8 儀器設備與材料分析方法 32 3.8.1場發射掃描式電子顯微鏡(Scanning Electron Microscope, FE-SEM) 32 3.8.2拉曼光譜儀(Raman Spectrum) 34 3.8.3 X射線繞射儀(X-ray Diffraction, XRD) 35 3.8.4場發射槍穿透式電子顯微鏡(300kV)(FEG-TEM ) 37 3.8.5 X光電子能譜儀 (X-ray photfoelectron spectroscopy, XPS) 38 3.8.6電化學分析儀(Electrochemical Workstation) 39 第四章 碳氮化硼/超奈米鑽石複合矽基板結構之超級電容特性分析 4.1 超奈米鑽石複合矽基板結構(N-UNCD / n-Si)之特性分析 40 4.1.1 超奈米鑽石複合矽基板結構(N-UNCD / n-Si) 實驗流程圖 41 4.1.2 N-UNCD / n-Si表面型態分析 42 4.1.3 N-UNCD / n-Si拉曼光譜儀分析 45 4.1.4 N-UNCD / n-Si循環伏安法(Cyclic voltammetry, CV)分析 48 4.1.5 N-UNCD / n-Si恆電流充放電(Galvanostatic charge/discharge, GCD)分析 53 4.2 氮氣退火後處理超奈米鑽石複合矽基板結構(AN_N-UNCD / n-Si)之特性分析 57 4.2.1 氮氣退火後處理超奈米鑽石複合矽基板結構(AN_N-UNCD / n-Si) 實驗流程圖 57 4.2.2 AN_N-UNCD / n-Si表面型態分析 59 4.2.3 AN_N-UNCD / n-Si拉曼光譜儀分析 69 4.2.4 AN_N-UNCD / n-Si循環伏安法(Cyclic voltammetry, CV)分析 78 4.2.5 AN_N-UNCD / n-Si恆電流充放電(Galvanostatic charge/discharge, GCD)分析 90 4.3 碳氮化硼/超奈米鑽石複合矽基板結構(BCN / N-UNCD / n-Si) 之特性分析 94 4.3.1 碳氮化硼/超奈米鑽石複合矽基板結構(BCN / N-UNCD / n-Si)實驗流程圖 95 4.3.2 BCN / N-UNCD / n-Si表面型態分析 97 4.3.3 BCN / N-UNCD / n-Si拉曼光譜儀分析 99 4.3.4 BCN / N-UNCD / n-Si X-ray繞射儀分析 102 4.3.5 BCN / N-UNCD / n-Si X光電子能譜儀分析 106 4.3.6 BCN / N-UNCD / n-Si場發射槍穿透式電子顯微鏡分析 125 4.3.7 BCN / N-UNCD / n-Si循環伏安法(Cyclic voltammetry, CV)分析 127 4.3.8 BCN / N-UNCD / n-Si恆電流充放電(Galvanostatic charge/discharge, GCD)分析 130 4.4 氮氣退火後處理碳氮化硼/超奈米鑽石複合矽基板結構(AN_BCN / N-UNCD / n-Si)之特性分析 132 4.4.1 氮氣退火後處理碳氮化硼/超奈米鑽石複合矽基板結構(AN_BCN / N-UNCD / n-Si)實驗流程圖 132 4.4.2 AN_BCN / N-UNCD / n-Si表面型態分析 134 4.4.3 AN_BCN / N-UNCD / n-Si拉曼光譜儀分析 137 4.4.4 AN_BCN / N-UNCD / n-Si X-ray繞射儀分析 142 4.4.5 AN_BCN / N-UNCD / n-Si X光電子能譜儀分析 146 4.4.6 AN_BCN / N-UNCD / n-Si循環伏安法(Cyclic voltammetry, CV) 分析 160 4.4.7 AN_BCN / N-UNCD / n-Si恆電流充放電(Galvanostatic charge/discharge, GCD)分析 165 4.5 結論 168 第五章 碳氮化硼/超奈米鑽石複合矽奈米線結構之超級電容特性分析 5.1 超奈米鑽石複合矽奈米線結構(N-UNCD / SiNWs)之特性分析 171 5.1.1 超奈米鑽石複合矽奈米線結構(N-UNCD / SiNWs) 實驗流程圖 172 5.1.2 N-UNCD / SiNWs表面型態分析 174 5.1.3 N-UNCD / SiNWs拉曼光譜儀分析 183 5.1.4 N-UNCD / SiNWs循環伏安法(Cyclic voltammetry, CV)分析 181 5.1.5 N-UNCD / SiNWs恆電流充放電(Galvanostatic charge/discharge, GCD)分析 188 5.2 氮氣退火後處理超奈米鑽石複合矽奈米線結構(AN_N-UNCD / SiNWs)之特性分析 191 5.2.1 氮氣退火後處理超奈米鑽石複合矽奈米線結構(AN_N-UNCD / SiNWs) 實驗流程圖 191 5.2.2 AN_N-UNCD / SiNWs表面型態分析 193 5.2.3 AN_N-UNCD / SiNWs拉曼光譜儀分析 196 5.2.4 AN_N-UNCD / SiNWs循環伏安法(Cyclic voltammetry, CV)分析 198 5.2.5 AN_N-UNCD / SiNWs恆電流充放電(Galvanostatic charge/discharge, GCD)分析 202 5.3 碳氮化硼/超奈米鑽石複合矽奈米線結構(BCN / N-UNCD / SiNWs)之特性分析 205 5.3.1 碳氮化硼/超奈米鑽石複合矽奈米線結構(BCN / N-UNCD / SiNWs)實驗流程圖 206 5.3.2 BCN / N-UNCD / SiNWs表面型態分析 207 5.3.3 BCN / N-UNCD / SiNWs拉曼光譜儀分析 209 5.3.4 BCN / N-UNCD / SiNWs循環伏安法(Cyclic voltammetry, CV)分析 212 5.3.5 BCN / N-UNCD / SiNWs恆電流充放電(Galvanostatic charge/discharge, GCD)分析 213 5.4 氮氣退火後處理碳氮化硼/超奈米鑽石複合矽奈米線結構(AN_BCN / N-UNCD / SiNWs)之特性分析 215 5.4.1 氮氣退火後處理碳氮化硼/超奈米鑽石複合矽奈米線結構(AN_BCN / N-UNCD / SiNWs)實驗流程圖 217 5.4.2 AN_BCN / N-UNCD / SiNWs表面型態分析 218 5.4.3 AN_BCN / N-UNCD / SiNWs拉曼光譜儀分析 219 5.4.4 AN_BCN / N-UNCD / SiNWs循環伏安法(Cyclic voltammetry, CV)分析 221 5.4.5 AN_BCN / N-UNCD / SiNWs電流充放電(Galvanostatic charge/discharge, GCD)分析 223 5.4 結論 225 第六章 結論與未來展望 6.1 結論 226 6.2 未來展望 229 參考文獻 230

[1].S.H.Wang, T.Wang, Corrosion-Resistant Functional Diamond Coatings for Reliable Interfacing of Liquid Metals with Solid Metals, ACS Applied Materials & Interfaces, 36 (2020), 40891-40900.
https://pubs.acs.org/doi/abs/10.1021/acsami.0c09428
[2].R. L. McCreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chem. Rev., 108 (2008), 2646-2687.
https://doi.org/10.1021/cr068076m
[3].S.T. Lee, Z. Lin, CVD diamond films: nucleation and growth, Materials Science and Engineering: R: Reports, 25 (1999), 123-154.
https://www.sciencedirect.com/science/article/pii/S0927796X99000030
[4].S. Yu, N. Yang, Electrochemical Supercapacitors from Diamond, The Journal of Physical Chemistry C, 119 (2015), 18918-18926.
https://pubs.acs.org/doi/full/10.1021/acs.jpcc.5b04719
[5].Sachin Kumar, Ghuzanfar Saeed, Ling Zhu, Kwun Nam Hui, Nam Hoon Kim, Joong Hee Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review, Chemical Engineering Journal, 40 (2021), 126352.
https://doi.org/10.1016/j.cej.2020.126352
[6].M. Yu, Y. Lu, H. Zheng and X. Lu, New Insights into the Operating Voltage of Aqueous Supercapacitors, Chem.–Eur. J., 24 (2018), 3639-3649.
https://doi.org/10.1002/chem.201704420
[7].Kui-Qing Peng, Xin Wanga, Silicon nanowires for advanced energy conversion and storage, nanotoday, 8 (2013), 75-97.
https://www.sciencedirect.com/science/article/pii/S1748013212001466
[8].Huang Ruia, Fan Xing, Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes, Applied Physics Letters, 95 (2013), 133119.
https://www.scopus.com/record/display.uri?eid=2-s2.0-70349662178&origin=inward&txGid=62a87fc5bf6a68066be7622bfb4a957c
[9].Kelzenberg Michael D, Boettcher Shannon W, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nature Materials, 9 (2010), 239 – 244.
https://www.scopus.com/record/display.uri?eid=2-s2.0-77249164255&origin=inward&txGid=6a88c1526b81bc00e595cb038b75430a
[10].R. B. Weisman, New Frontiers in Nanocarbons, Electrochem. Soc. Interface, 22 (2013), 49.
https://doi.org/10.1149/2.F02133if
[11].R. L. McCreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chem. Rev., 108 (2008), 2646-2687.
https://doi.org/10.1021/cr068076m
[12].S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991), 56-58.
https://doi.org/10.1038/354056a0
[13].H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985), 162-163.
https://doi.org/10.1038/318162a0
[14].Patrick T.Moseleya, David A.J.Rand, Understanding the functions of carbon in the negative active-mass of the lead–acid battery: A review of progress, Journal of Energy Storage, 19 (2018), 272-290.
https://www.sciencedirect.com/science/article/pii/S2352152X18303955
[15].Nianjun Yang, Siyu Yu, Julie V. Macpherson, Yasuaki Einaga, Hongying Zhao, Guohua Zhao, Greg M. Swain and Xin Jiang, Conductive diamond: synthesis, properties, and electrochemical applications, Chem. Soc. Rev., 48 (2019), 157-204.
https://doi.org/10.1039/C7CS00757D
[16].Seiichiro Matsumoto, Yoichiro Sato, Mutsukazu Kamo and Nobuo Setaka, Vapor deposition of diamond particles from methane, Japanese Journal of Applied Physics, 21 (1982), L183.
https://doi.org/10.1143/JJAP.21.L183
[17].C. R. Lin, D. H. Wei, M. K. BenDao, W. E. Chen, T. Y. Liu, Development of High-Performance UV Detector Using Nanocrystalline Diamond Thin Film, International Journal of Photoenergy, 2014 (2014), 492152.
https://doi.org/10.1155/2014/492152
[18].Arora, S. and V. Vankar, Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness, Thin Solid Films, 515(4) (2006), 1963-1969.
https://doi.org/10.1016/j.tsf.2006.08.002
[19].O.A. Williamsab, M. Nesladek, Growth, electronic properties and applications of nanodiamond, Diamond and Related Materials, 17 (2008), 1080-1088.
https://www.sciencedirect.com/science/article/pii/S0925963508001453
[20].S.J. Kim, B.K Jul, Y.H. Lee, B.S. Park, Emission characteristic of diamond-tip FEA fabricated by transfer mold technique, IEEE, 526 (1996), 526-529.
https://doi.org/10.1109/IVMC.1996.601879
[21].Rani, R., Kumar, N., Kozakov, A.T., Googlev, K.A. and Sankaran, K.J., Superlubrication Properties of Ultra-Nanocrystalline Diamond Film Sliding against a Zirconia Ball. RSC Advances, 5 (2015), 100663-100673.
https://doi.org/10.1039/C5RA18832F
[22].O.A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa, K. Haenen, R.B. Jackman, Growth, electronic properties and applications of nanodiamond, Diamond and Related Materials, 17(7–10) (2008), 1080-1088.
https://doi.org/10.1016/j.diamond.2008.01.103
[23].J. Yang, and Y. Zhang, Nanocrystalline Diamond Films Grown by Microwave Plasma Chemical Vapor Deposition and Its Biocompatible Property, Advances in Materials Physics and Chemistry, 8 (2018), 157-176.
https://doi.org/10.4236/ampc.2018.84011
[24].Butler, J.E. and Sumant, A.V., The CVD of Nanodiamond Materials, Chemical Vapor Deposition, 14 (2008), 145-160.
https://doi.org/10.1002/cvde.200700037
[25].Fan Dong, Liwen Wu, Yanjuan Sun, Min Fu, Zhongbiao Wu and S. C. Lee, Efficient synthesis of polymeric gC3N4 layered materials as novel efficient visible light driven photocatalysts, Journal of Materials Chemistry, 21(39) (2011), 15171-15174.
https://doi.org/10.1039/C1JM12844B
[26].Ikeda, T., Teii, K., Casiraghi, C., Robertson, J. and Ferrai, A.C., Effect of the sp2 Carbon Phase on n-Type Conduction in Nanodiamond Films, Journal of Applied Physics, 104 (2008), 073720.
https://doi.org/10.1063/1.2990061
[27].Shraddha Dhanraj Nehate, Sreeram Sundaresh, Hydrogenation of Boron Carbon Nitride Thin Films for Low-k Dielectric Applications, ECS Journal of Solid State Science and Technology, 10 (2021), 093001.
https://iopscience.iop.org/article/10.1149/2162-8777/ac210d
[28].Rongting Wu, Adrian Gozar, Large-area borophene sheets on sacrificial Cu(111) films promoted by recrystallization from subsurface boron, npj Quantum Materials volume , 4 (2019), 40.
https://www.nature.com/articles/s41535-019-0181-0
[29].Siby Thomas, Sang Uck Lee, Atomistic insights into the anisotropic mechanical properties and role of ripples on the thermal expansion of h-BCN monolayers, RSC Advances, 9 (2019), 1238-1246.
https://pubs.rsc.org/en/content/articlehtml/2019/ra/c8ra08076c
[30].Shayan Angizi, Md Ali Akbar, Review—Two-Dimensional Boron Carbon Nitride: A Comprehensive Review, ECS Journal of Solid State Science and Technology, 9 (2020), 083004.
https://iopscience.iop.org/article/10.1149/2162-8777/abb8ef
[31].Evgeni S. Penev, Somnath Bhowmick, Polymorphism of Two-Dimensional Boron, American Chemical Society, 5 (2012), 2441-2445. https://pubs.acs.org/doi/full/10.1021/nl3004754
[32].Walter R. L. Lambrecht, Benjamin Segall, Anomalous band-gap behavior and phase stability of c-BN–diamond alloys, PHYSICAL REVIEW B, 47 (1993), 9289.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.47.9289
[33].Md. Abdul Mannan, Yuji Baba, Hexagonal Nano-Crystalline BCN Films Grown on Si (100) Substrate Studied by X-Ray Absorption Spectroscopy, Materials Sciences and Applications, 4 (2013), 9
https://www.scirp.org/html/3-7700988_31618.htm
[34].D.Y. Guo, P.G. Li, Z.W. Chen, Z.P. Wu, W.H. Tang, Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector, Acta Phys. Sin., 68(7) (2019), 078501.
https://doi.org/10.7498/aps.68.20181845
[35].S. Abolhosseini, A. Heshmati, J. Altmann, A review of renewable energy supply and energy efficiency technologies, Cog. Eng. 8145 (2014).
https://dx.doi.org/10.2139/ssrn.2432429
[36].Wang S, Wei T, Qi Z., Supercapacitor energy storage technology and its application in renewable energy power generation system. In: Goswami D.Y., Zhao Y. (eds) Proceedings of ISES World Congress 2007 (Vol. I–Vol. V). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-75997-3_566
[37].W. Raza, F. Ali, N. Raza, Y. Luo, K.H. Kim, J. Yang, et al., Recent advancements in supercapacitor technology, Nano Energy, 52 (2018), 441-473.
https://doi.org/10.1016/j.nanoen.2018.08.013
[38].J. Xie, P. Yang, Y. Wang, T. Qi, Y. Lei, C.M. Li, Puzzles and confusions in supercapacitor and battery: theory and solutions, J Power Sources, 401 (2018), 213-223.
https://doi.org/10.1016/j.jpowsour.2018.08.090
[39].Binoy K. Saikia, Santhi Maria Benoy, Mousumi Bora, Joyshil Tamuly, Mayank Pandey, Dhurbajyoti Bhattacharya, A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials, Fuel, 282 (2020), 118796.
https://doi.org/10.1016/j.fuel.2020.118796.
[40].N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Mater Today, 18 (5) (2015), 252-264.
https://doi.org/10.1016/j.mattod.2014.10.040
[41].Yanfang Xu, Weibang Lu, Guangbiao Xu, Tsu-Wei Chou, Structural supercapacitor composites: A review, Composites Science and Technology, 204 (2021), 108636.
https://doi.org/10.1016/j.compscitech.2020.108636
[42].N.P. Shetti, S. Dias, K.R. Reddy, Nanostructured organic and inorganic materials for Li-ion batteries: a review, Mater Sci Semicond Process, 104 (2019), 104684.
https://doi.org/10.1016/j.mssp.2019.104684
[43].R.E. Ruther, C.N. Sun, A. Holliday, S. Cheng, F.M. Delnick, T.A. Zawodzinski Jr., et al., Stable electrolyte for high voltage electrochemical double-layer capacitors, J Electrochem Soc (2017), A277-A283.
https://doi.org/10.1149/2.0951702jes
[44].Y. Luo, Q. Zhang, W. Hong, Z. Xiao, H. Bai, A High-performance electrochemical supercapacitor based on polyaniline/reduced graphene oxide electrode and copper (ii) ion active electrolyte, Phys. Chem. Chem. Phys., 20 (1) (2017), 131-136.
https://doi.org/10.1039/c7cp07156f
[45].G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41 (2012), 797-828.
https://doi.org/10.1039/C1CS15060J
[46].A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials, Renew. Sustain. Energy Rev., 58 (2016), 1189-1206.
https://doi.org/10.1016/j.rser.2015.12.249
[47].K. Poonam, A. Sharma, S.K. Arora, Tripathi, review of supercapacitors: materials and devices, J. Energy Stor., 21 (2019), 801-825.
https://doi.org/10.1016/j.est.2019.01.01
[48].R.L. Spyker, R.M. Nelms, Classical equivalent circuit parameters for a double-layer capacitor, IEEE Trans Aerosp Electron Syst, 36 (3) (2000), 829-836.
https://doi.org/10.1109/7.869502
[49].Y. Show, Research article on electric double-layer capacitor fabricated with addition of carbon nanotube to polarizable electrode, J Nanomater (2012), 1-8.
https://doi.org/10.1155/2012/929343
[50].M. Yassine, D. Fabris, Performance of commercially available supercapacitors, Energies, 10 (9) (2017), 1340-1352.
https://doi.org/10.3390/en10091340
[51].Yong S, Fabrication and characterisation of fabric supercapacitor [Doctoral Thesis], University of Southampton (2016) p.160.
https://eprints.soton.ac.uk/417382/
[52].Kim BK, Sy S, Yu A, Zhang J., Electrochemical supercapacitors for energy storage and conversion, Handbook of Clean Energy Systems, Wiley Publications (2015), 1-25.
https://doi.org/10.1002/9781118991978.hces112.
[53].B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999).
https://link.springer.com/book/10.1007/978-1-4757-3058-6
[54].V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7 (2014), 1597-1664.
https://doi.org/10.1039/C3EE44164D
[55].C. Zhao, W. Zheng, A review for aqueous electrochemical supercapacitors, J. Front. Energy Res., 3(23) (2015), 1-8.
https://doi.org/10.3389/fenrg.2015.00023
[56].X. Yuan, Y. Zhang, Y. Yan, B. Wei, K. Qiao, B. Zhu, X. Cai, T.-W. Chou, Tunable synthesis of biomass-based hierarchical porous carbon scaffold@ MnO2 nanohybrids for asymmetric supercapacitor, Chem. Eng. J., 393 (2020), 121214.
https://doi.org/10.1016/j.cej.2019.03.090
[57].Shuilin Wu, Yatu Chen, Tianpeng Jiao, Jun Zhou, Junye Cheng, Bin Liu, Shaoran Yang, Kaili Zhang,Wenjun Zhang, An Aqueous Zn-Ion Hybrid Supercapacitor with High Energy Density and Ultrastability up to 80,000 Cycles, Advanced Energy Materials, 9(47) (2019), 1902915.
https://doi.org/10.1002/aenm.201902915
[58].X. Yuan, Y. Zhang, Y. Yan, B. Wei, K. Qiao, B. Zhu, X. Cai, T.-W. Chou, Tunable synthesis of biomass-based hierarchical porous carbon scaffold@ MnO2 nanohybrids for asymmetric supercapacitor, Chem. Eng. J., 393 (2020), 121214.
https://doi.org/10.1016/j.cej.2019.03.090
[59].Dongping Chen, Facile fabrication of nanoporous BCN with excellent charge/discharge cycle stability for high-performance supercapacitors, Materials Letters, 246 (2019),28-31.
https://www.sciencedirect.com/science/article/pii/S0167577X19304008
[60].Shouzhi WangShouzhi, Band gap-Tunable Porous Borocarbonitride Nanosheets for High Energy-Density Supercapacitors, ACS Applied Materials & Interfaces, 23 (2018), 19588-19597.
https://pubs.acs.org/doi/full/10.1021/acsami.8b02317
[61].Shayan Angizi, Towards Integration of Two-Dimensional Hexagonal Boron Nitride (2D h-BN) in Energy Conversion and Storage Devices, Energies, 15 (2022), 1162.
https://www.mdpi.com/1996-1073/15/3/1162
[62].Sanjit Saha, Band Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device, ACS Applied Materials & Interfaces, 26 (2015), 14211-14222.
https://pubs.acs.org/doi/full/10.1021/acsami.5b03562
[63].Indrajit M.Patil, 2D/3D heterostructure of h-BN/reduced graphite oxide as a remarkable electrode Material for supercapacitor, Journal of Power Sources, 479 (2020), 229092.
https://www.sciencedirect.com/science/article/pii/S0378775320313872
[64].S.D.Nehate. A review of boron carbon nitride thin films and progress in nanomaterials, materialstoday ADVANCES, 8 (2020), 100106.
https://www.sciencedirect.com/science/article/pii/S2590049820300539
[65].Shayan Angizi, Review—Two-Dimensional Boron Carbon Nitride: A Comprehensive Review, ECS Journal of Solid State Science and Technology, 9 (2020), 083004.
https://iopscience.iop.org/article/10.1149/2162-8777/abb8ef/meta
[66].Md. Abdul Mannan, Hexagonal Nano-Crystalline BCN Films Grown on Si (100) Substrate Studied by X-Ray Absorption Spectroscopy, Materials Sciences and Applications,4 (2013), 31618.
https://www.scirp.org/html/3-7700988_31618.htm
[67].Paolo Giusto, Chemical Vapor Deposition of Highly Conjugated, Transparent Boron Carbon Nitride Thin Films, ADVANCED SCIENCE, 8 (2021), 2101602.
https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202101602
[68].Manjot Kaur, Defect states induced luminescence and electrochemical studies of boron carbon nitride nanosheets, Applied Surface Science, 559 (2021), 149982.
https://www.sciencedirect.com/science/article/pii/S0169433221010588
[69].Siyong Gu, Hexagonal boron nitride nanosheets as metal-free electrochemical catalysts for oxygen reduction reactions, Ceramics International, 48 (2022), 9506-9517.
https://www.sciencedirect.com/science/article/pii/S0272884221039316
[70].Adithya Prakash, Deposition and XPS studies of dual sputtered BCN thin films, Diamond and Related Materials, 64 (2016), 80-88.
https://scholar.google.com.tw/scholar?hl=zh-TW&as_sdt=0%2C5&q=Deposition+and+XPS+studies+of+dual+sputtered+BCN+thin+films%2C+Diamond+and+Related+Materials&btnG=
[71].Nuria J-A, Ultrathin Transparent B–C–N Layers Grown on Titanium Substrates with Excellent Electrocatalytic Activity for the Oxygen Evolution Reaction, ACS Applied Energy Materials, 3 (2020),1922-1932.
https://pubs.acs.org/doi/full/10.1021/acsaem.9b02339
[72].Hongping Li, Tuning the Chemical Hardness of Boron Nitride Nanosheets by Doping Carbon for Enhanced Adsorption Capacity, ACS Omega, 9 (2017), 5385-5394.
https://pubs.acs.org/doi/full/10.1021/acsomega.7b00795
[73].Junqi Li, A series of BCN nanosheets with enhanced photoelectrochemical performances, Chemical Physics Letters, 672 (2017), 99-104.
https://www.sciencedirect.com/science/article/pii/S0009261417300775
[74].Y Wada, The control of Bsingle bondN and Bsingle bondC bonds in BCN films synthesized using pulsed laser deposition, Diamond and Related Materials, 9 (2000),620-624.
https://www.sciencedirect.com/science/article/pii/S0925963500002041
[75].ayi, A., Shveyd, A., Sue, AH. et al., Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes, Nature, 488 (2012), 485-489.
https://doi.org/10.1038/nature11395
[76].F. Gao, M.T. Wolfer, C.E. Nebel, Highly porous diamond foam as a thin-film micro supercapacitor material, Carbon, 80 (2014), 833-840.
https://doi.org/10.1016/j.carbon.2014.09.007
[77].F. Gao, C.N. Nebel, Diamond-based supercapacitors: realization and properties, ACS Appl. Mater. Interfaces, 8, 42 (2016), 28244-28254.
https://doi.org/10.1021/acsami.5b07027
[78].Siyu Yu, Nianjun Yang, Hao Zhuang, Jan Meyer, Soumen Mandal, Oliver A. Williams, Inga Lilge, Holger Schönherr, and Xin Jiang, Electrochemical Supercapacitors from Diamond, J. Phys. Chem. C, 119, 33 (2015), 18918-18926.
https://doi.org/10.1021/acs.jpcc.5b04719
[79].H. Zhuang, N. Yang, L. Zhang, R. Fuchs, X. Jiang, Electrochemical Properties and Applications of Nanocrystalline, Microcrystalline, and Epitaxial Cubic Silicon Carbide Films, ACS Appl. Mater. Interfaces, 7 (2015), 10886-10895.
https://doi.org/10.1021/acsami.5b02024
[80].Liu C, Cheng X, Dai Z, Liu R, Li Z, Cui L, Chen M, Ke L., Synergistic Effect of Al2O3 Inclusion and Pearlite on the Localized Corrosion Evolution Process of Carbon Steel in Marine Environment, Materials., 11 (2018), 2277.
https://doi.org/10.3390/ma11112277

無法下載圖示 全文公開日期 2024/09/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE