簡易檢索 / 詳目顯示

研究生: 彭玟瑞
Wen-Jui Peng
論文名稱: 三主動全橋式轉換器之最小有效值電流優化設計
Triple Active Bridge Converter with Minimum RMS Current Optimized Design
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 劉宇晨
Yu-Chen Liu
張佑丞
You-Cheng Zhang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 71
中文關鍵詞: 三主動全橋式轉換器最小有效值電流不斷電系統
外文關鍵詞: Triple active bridge converter, Minimum RMS current, Uninterruptible power system
相關次數: 點閱:200下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文是研究三主動全橋式轉換器,應用於不斷電系統的雙向儲能裝置。當三主動全橋式轉換器操作於一個切換週期中,會有一部分的功率傳遞至輸出負載,另外一部分的功率則會傳遞回一次側,產生能量的損失,此損失定義為三主動全橋式轉換器的虛功率。為了提高轉換器的效率,本論文設計三主動全橋式轉換器操作於最小的有效值電流,減少開關元件與磁性元件的導通損失,達成減少三主動全橋式轉換器的虛功率的效果。在論文中,將先推導三主動全橋式轉換器的Y、Δ等效電路,並且利用轉換器的Δ等效電路推導出功率傳遞方程式。根據二、三次側的相位角超前或者落後一次側,取得三主動全橋式轉換器的6種功率傳遞方向。之後再利用所推導的功率傳遞方程式以及電流有效值方程式,設計轉換器中三個電路參數,最大相移角φmax、變壓器匝數比n以及串聯電感Leq,並且製作出實體電路進行測試。
此轉換器參考市售的不斷電系統規格,實際完成一台輸入電壓170 ~280 V、兩組輸出電壓360 V以及輸出功率可達到10 kW的三主動全橋式轉換器。並以單相移控制的方式,控制轉換器功率的傳遞。實作部分利用數位訊號處理器進行控制,取三組輸入電壓170 V、220 V、280 V進行電路測試,在不同的負載條件下,兩組輸出電壓皆可以達到360 V,於半載時效率可以達到90%以上。


The thesis is to study the triple active bridge converter, which is applied to the bidirectional energy storage device of the uninterruptible power system. The triple active bridge converter operates in one switching cycle, a part of power will be transferred to the load, and the other part of power will be transferred back to the primary side, resulting in energy loss, which is defined as the reactive power of the triple active bridge converter. In order to increase the converter efficiency, the triple active bridge converter designs with the minimum RMS current to reduce the conduction loss of the switching component and the magnetic component. Achieve the effect of reducing the reactive power of the triple active bridge converter. In the thesis, first, the Y and Δ equivalent circuit diagram of the triple active bridge converter will be derived, and using the Δ equivalent circuit diagram derived the deliver power equation. According to the phase shift angles of secondary side and third side lead or lag the primary side, the six power deliver directions of the triple active bridge converter can be obtained. Then, using the deliver power equation and the current RMS equation design the converter parameters, such as maximum phase shift angle φmax, transformer turns ratio n and inductor Leq. Finally, making actual circuit test the converter.
The converter refers to the specifications of uninterruptible power system, and actually completes a triple active bridge converter with an input voltage of 170~280 V, two output voltages of 360 V and output power of 10 kW. Using the single phase shift control method to control the power delivery of the triple active bridge converter. The implementation uses a digital signal processor to control. Three input voltages of 170 V, 220 V, and 280 V are used to test the circuit. Under different load condition, the two output voltages can reach 360 V, and the efficiency can reach more than 90% at 50% load.

摘要 Abstract 誌謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 論文內容架構 第二章 主動全橋式轉換器原理與動作分析 2.1 雙主動全橋式轉換器 2.1.1 動作區間分析 2.1.2 功率函數推導 2.2 三主動全橋式轉換器 2.2.1 三主動全橋式轉換器Y、Δ等效圖 2.2.2 平均功率傳遞 第三章 三主動全橋式轉換器電路設計 3.1 零電壓切換條件 3.2 串聯電感設計 3.2.1 電感跨壓推導 3.2.2 電感電流有效值推導 3.2.3 電感參數設計 第四章 系統研製 4.1 電路規格 4.2 元件選用與設計 4.2.1 隔離變壓器設計 4.2.2 電感設計 4.2.3 功率開關元件設計 4.3 數位控制設計 第五章 模擬與實驗結果 5.1 電路模擬 5.2 實測波形 5.3 效率量測與損耗分析 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

[1] C. Vieira and V. F. Pires, "Hybrid PV-UPS system with multilevel structure of power converters and reliability improvment," 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), 2016, pp. 873-878.
[2] Y. Kado, S. Okutani, K. Katagiri and P. -Y. Huang, "Autonomous DC Microgrid Consisting of Triple Active Bridge Converters," 2019 IEEE Third International Conference on DC Microgrids (ICDCM), 2019, pp. 1-5.
[3] S. Nakagawa, J. Arai, R. Kasashima, K. Nishimoto, Y. Kado and K. Wada, "Dynamic performance of triple-active bridge converter rated at 400 V, 10 kW, and 20 kHz," 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), 2017, pp. 1090-1094.
[4] D. Sha and G. Xu, High-frequency isolated bidirectional dual active bridge DC-DC converters with wide voltage gain. Singapore: Springer, 2019.
[5] K. George, “Design and Control of a Bidirectional Dual Active Bridge DC-DC Converter to Interface Solar, Battery Storage, and Grid-Tied Inverters.” 2015.
[6] C. Zhao, S. D. Round and J. W. Kolar, "An Isolated Three-Port Bidirectional DC-DC Converter With Decoupled Power Flow Management," in IEEE Transactions on Power Electronics, vol. 23, no. 5, pp. 2443-2453, Sept. 2008.
[7] R. W. A. A. De Doncker, D. M. Divan, and M. H. Kheraluwala, “A three-phase soft-switched high-power-density DC/DC converter for high-power applications,” IEEE Trans. Ind. Appl., vol. 27, no. 1, pp. 63–73, Jan. 1991.
[8] V. -L. Pham and K. Wada, "Design of Series Inductances in Triple Active Bridge Converter Using Normalization Procedure for Integrated EV and PV System," 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia), 2019, pp. 3027-3032.
[9] Y. Yu, K. Masumoto, K. Wada and Y. Kado, "Power flow control of a triple active bridge DC-DC converter using GaN power devices for a low-voltage DC power distribution system," 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), 2017, pp. 772-777.
[10] K. Katagiri, S. Nakagawa, Y. Kado and K. Wada, "Analysis on load-factor dependence of triple active bridge converter's transmission efficiency for autonomous power networks," TENCON 2017 - 2017 IEEE Region 10 Conference, 2017, pp. 2177-2181.
[11] P. Purgat, S. Bandyopadhyay, Z. Qin and P. Bauer, "Zero Voltage Switching Criteria of Triple Active Bridge Converter," in IEEE Transactions on Power Electronics, vol. 36, no. 5, pp. 5425-5439, May 2021.
[12] I. Biswas, D. Kastha and P. Bajpai, "TAB Based Multiport Converter with Optimized Transformer RMS Current and Improved ZVS Range for DC Microgrid Applications," IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, 2019, pp. 2050-2055.
[13] CWT. McLyman, Transformer and Inductor Design Handbook, Fourth Edition. Fourth edition. CRC Press, 2017.
[14] Texas Instruments Inc., "TMS320x2803x Piccolo Technical Reference Manual, " Datasheet, December 2018.
[15] 蕭伯承,應用於不斷電系統之三主動全橋式轉換器之研製,國立台灣科技大學電子工程系碩士論文,2021年
[16] 王嘉丞,應用於車輛之雙主動全橋式轉換器研製,國立台灣科技大學電子工程系碩士論文,2020年
[17] 陳怡瑄,三重相移控制之寬範圍雙主動全橋式電路研製,國立台灣科技大學電子工程系碩士論文,2021年

QR CODE