簡易檢索 / 詳目顯示

研究生: 莊家廉
Chia-Lien Chuang
論文名稱: 使用自振式環隙共振器與互補式環隙共振器之液體濃度感測器研發
Development of Liquid Concentration Sensors Using Self-Oscillating Split-Ring Resonator and Complementary Split-Ring Resonator
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 林丁丙
Ding-Bing Lin
王蒼容
Chun-Long Wang
謝松年
Sung-Nien Hsieh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 52
中文關鍵詞: 環隙共振器互補式環隙共振器迴路式振盪器設計延遲鑑頻解調器液體感測器
外文關鍵詞: Split-Ring Resonator (SRR), Complementary Split-Rings Resonator (CSRR), Oscillator design, Delay-line discriminator demodulator, Liquid concentration sensors
相關次數: 點閱:186下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文開發一款新型的 2.4 GHz液體濃度感測器,主要由感測振盪器與延遲線鑑頻解調器所構成。其中,兩感測振盪器分別以自振式環隙共振器(self-oscillating split-ring resonator, SO-SRR)與自振式互補式環隙共振器(self-oscillating complementary split-ring resonator, SO-CSRR)實現。在此,環隙共振器和互補式環隙共振器作為感測振盪器之選頻元件,同時也扮演著液體感測功能。使用兩型互補式結構共振器設計感測振盪器,係因環隙共振器與互補式環隙共振器分別以聚焦垂直磁場與電場偵測待測液體。本論文將以水-乙醇混合液作為待測液體進行感測器效能驗證。當水-乙醇混合液放置於環隙共振器或互補式環隙共振器上,根據微擾定理(perturbation theory),將導致共振頻率變化,並伴隨相位變化,亦即在指定頻率下,通過共振器之訊號將轉為相位調變訊號。基於注入鎖定原理(injection-locked theory),此相位調變訊號注入感測振盪器後,將轉換成頻率調變訊號。此時可在頻譜分析儀觀察到,不同的水-乙醇混合液濃度將對應到不同振盪頻率。實驗結果顯示,水-乙醇濃度上升與振盪頻率偏移呈現線性關係。此外,本論文使用延遲線鑑頻器作為解調器,將頻率偏移結果轉換成電壓值大小,以獲得水-乙醇濃度與輸出電壓值之間的關係。


    This thesis proposes a new 2.4 GHz liquid concentration sensor, which is mainly composed of a sensing oscillator and a delay-line frequency discriminator demodulator. Two sensing oscillators are implemented by a self-oscillating split-ring resonator (SO-SRR) and a self-oscillating complementary split-rings resonator (SO-CSRR). Here, the resonators are not only treated as the frequency-selective elements for oscillator design, but also acted as liquid sensing devices. Since SRR and CSRR respectively concentrate vertical magnetic and electric fields for liquid sensing, both complementary resonator structures are employed to design sensing oscillators. In this thesis, water-ethanol mixtures with different concentrations are adopted as liquids under test. As the water-ethanol mixture is placed on the SRR or CSRR, according to the perturbation theory, it leads to a resonant frequency deviation accompanying with a phase shift. Namely, at a specified frequency, the signal, which passes through the SRR or CSRR, will be phase-modulated by the liquid under test. Based on the injection-locked theory, when this phase-modulated signal injects into the sensing oscillator, it will transfer into a frequency-modulated signal. At this moment, different oscillation frequencies will be observed by a spectrum analyzer with corresponding to water-ethanol mixtures having different concentrations. The experimental results reveal that the concentration of water-ethanol mixture is linearly related to the oscillation frequency. In addition, in order to obtain the relationship between the water-ethanol concentrations and the sensor output voltages, this thesis uses a delay-line discriminator as a demodulator to transfer the oscillation frequency deviations to voltage values.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 第1章 序論 1 1-1 前言 1 1-2 研究動機 1 1-3 章節說明 4 第2章 感測振盪器設計 5 2-1 環隙振盪器設計 5 2-2 互補式環隙振盪器設計 23 第3章 感測解調電路設計 32 3-1 解調電路架構介紹 32 3-2 感測器量測結果與驗證 38 第4章 結論 42 參考文獻 43

    [1] Withawat Withayachumnankul, et al., “Metamaterial-based microfluidic sensor for dielectric characterization,” Journal. Sensor and Actuators. phys, vol. 189, no. 15, pp. 233–237, Jan. 2013.
    [2] David J. Rowe, et al., “Improved split-ring resonator for microfluidic sensing,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 3, pp. 689–699, Jan. 2014.
    [3] Ali A. Abduljabar, David J. Rowe, Adrian Porch, and David A. Barrow, “Novel microwave microfluidic sensor using a microstrip split-ring resonator,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 3, pp. 679–688, Mar. 2014.
    [4] Amir Ebrahimi, James Scott, and Kamran Ghorbani, “Ultrahigh-sensitivity microwave sensor for microfluidic complex permittivity measurement,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 10, pp. 4269–4277, Oct. 2019.
    [5] Amir Ebrahimi, Withawat Withayachumnankul, Said Al-Sarawi, and Derek Abbott, “High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization,” IEEE Trans. Microw. Theory Techn., vol. 14, no. 5, pp. 1345–1351, May. 2014.
    [6] Giulia Maria Rocco, et al., “3-D printed microfluidic sensor in SIW technology for liquids’ characterization,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1175–1184, Mar. 2020.
    [7] Xiue Bao, et al., “Integration of interdigitated electrodes in split-ring resonator for detecting liquid mixtures,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 6, pp. 2080–2089, Jun. 2020.
    [8] Thomas Chretiennot, David Dubuc, and Katia Grenier, “A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 2, pp. 972–978, Feb. 2013.
    [9] Euclides Lourenço Chuma, Yuzo Iano, Glauco Fontgalland, and Leonardo Lorenzo Bravo Roger, “Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator,” IEEE Trans. Microw. Theory Techn., vol. 18, no. 24, pp. 9978–9983, Dec. 2018.
    [10] Jian-Zhong Bao, Mays L. Swicord, and Christopher C. Davis, “Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol,” J. Chem.Phys., vol. 104, no. 12, pp. 4441–4450, Mar. 1996.
    [11] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 11, pp. 2075–2084, Nov. 1999.
    [12] W. N. Hardy, and L. A. Whitehead, “Split-ring resonator for use in magnetic-resonance from 200–2000 MHz,” Rev. Sci. Instrum., vol. 52, no. 2, pp. 213–216, Feb. 1981.
    [13] S. Linden, et al., “Magnetic response of metamaterials at 100 terahertz,” Science, vol. 306, no. 5700, pp. 1351–1353, Nov. 2004.
    [14] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 11, pp. 2075–2084, Nov. 1999.
    [15] C. Enkrich, et al., “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett., vol 95, 203901, Nov. 2005.
    [16] N. Katsarakis, et al., “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett., vol. 30, no. 11, pp. 1348–1350, Jun. 2005.
    [17] J. Baena, et al., “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 4, pp. 1451–1461, Apr. 2005.
    [18] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329–330, Feb. 1966.
    [19] T. Ohira, “Rigorous Q factor formulation for one- and two-port passive linear networks from an oscillator noise spectrum viewpoint,” IEEE Trans. Circuits Syst. II, vol. 52, no. 12, pp. 846–850, Dec. 2005.
    [20] C.-H. Tseng and C.-L. Chang, “Design of low phase-noise microwave oscillator and wideband VCO based on microstrip combline bandpass filters,” IEEE Trans. Microw. Theory Techn., vol. 60, pp. 3151–3160, Oct. 2012.
    [21] D. M. Pozar, Microwave Engineering, 4th ed., New York, NY, USA: Wiley, 2012.

    無法下載圖示 全文公開日期 2024/08/02 (校內網路)
    全文公開日期 2024/08/02 (校外網路)
    全文公開日期 2024/08/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE