簡易檢索 / 詳目顯示

研究生: 李英愷
Ying-Kai Li
論文名稱: 結合超音波以及活體冷光影像探討包覆藥物之微氣泡對比劑對腫瘤細胞傳輸效率
Estimate the Delivery Efficiency in Cancer Cells of Drug-Loaded Microbubbles with US and BLI
指導教授: 廖愛禾
Ai-Ho Liao
口試委員: 莊賀喬
none
沈哲州
none
王士豪
none
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 95
中文關鍵詞: 冷光素微氣泡對比劑高頻超音波活體冷光影像系統乳腺癌細胞表達冷光酵素
外文關鍵詞: luciferin-loaded microbubbles (MBs), high-frequency ultrasound (US), in vivo bioluminescence imaging (BLI) system, luciferase-expressing breast cancer cell
相關次數: 點閱:274下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微氣泡對比劑裝載藥物可以結合超音波,在經過超音波照射後,有效的將藥物傳輸並且局部釋放和增加血管通透度。在本研究中,經由超音波傳導釋放新型的冷光素微氣泡對比劑使其經過血管去標靶乳腺癌細胞,而乳腺癌細胞表達冷光酵素會與冷光素結合發出冷光,接著使用活體冷光影像系統觀察研究。冷光素微氣泡對比劑為白蛋白外殼而其直徑為1591 nm和濃度為2.48x109 bubbles/ml。在每個微氣泡中,每個封裝的冷光素是1.48x10-10 mg/bubble。藉由2套高頻超音波影像系統分別進行體外和體內實驗,執行超音波傳導釋放冷光素微氣泡對比劑,除了驗證新型的對比劑其本身具有超音波對比劑特性,使腫瘤平均超音波影像強度增加16.4倍,同時也具有模擬藥物治療的效果。藉由活體冷光影像系統評估超音波在含有4T1-luc2腫瘤小鼠下,傳導釋放冷光素微氣泡對比劑的效率。結果顯示在腫瘤上的訊號強度在注射冷光素微氣泡對比劑後,經施打超音波其條件3W/cm2、30秒後,在3、5、7、10分鐘明顯高於沒有經過超音波照射(p0.005)組別。因此傳輸效率經過超音波傳導後可以改善且由於是經超音波對比劑包覆後,故整體所需注射的冷光素劑量可以減少約1/50


    Drug-loaded microbubbles (MBs) can combine with ultrasound (US) for efficient drug delivery by localized drug release, with an increase of capillary permeability at the site of MB destruction. In this study, the mechanism of US-mediated release of luciferin-loaded MBs through the blood vessels to targeted cells was investigated using an in-vivo bioluminescence imaging (BLI) system. The luciferin-loaded MBs had an albumin shell with the diameter of 1591 nm and the concentration of 2.48x109 bubbles/ml.
    In each MB, the concentration of encapsulated luciferin was 1.48x10-10 mg/bubble. In vitro and in vivo experiments with the US-mediated release of luciferin-loaded MBs with BLI were performed. The efficiency of the US-mediated release of luciferin-loaded MBs in 4T1-luc2 tumor-bearing mice was also estimated. The US images signal was increased with ultrasonic energy were 16.4-fold.
    The results indicated that the signal intensity of the tumor with 3W/cm2, 30 sec US destruction at 3, 5, 7 and 10 min post injection of luciferin-loaded albumin MBs, was significantly higher than without US destruction (p<0.005). The delivery efficiency improves with US-mediated release, and the total injection dose of luciferin can be reduced.

    中文摘要 I ABSTRACT II 誌謝 III 圖表索引 VI 第1章 緒論 1 1-1 超音波簡介 1 1-2 高頻超音波影像(high frequency ultrasound system) 3 1-3 超音波對比劑簡介與應用 5 1-3-1 穴蝕效應(cavitation) 7 1-4 活體冷光影像系統 10 1-4-1 生物發光(Bioluminescence) 10 1-4-2 螢光( Fluorescence) 12 1-5 研究動機與目的 15 1-6 論文架構 17 第2章 實驗-材料與方法 18 2-1 冷光素微氣泡對比劑 18 2-1-1 冷光素微氣泡對比劑製作 18 2-1-2 冷光素微氣泡對比劑粒徑以及濃度分析 21 2-1-2-1 冷光素微氣泡對比劑濃度量測 21 2-1-2-2 冷光素微氣泡對比劑粒徑量測 23 2-1-2-3 冷光素微氣泡對比劑外觀 24 2-2 冷光素微氣泡對比劑包覆效率量測 25 2-3 冷光素微氣泡對比劑體外高頻超音波影像 29 2-4 腫瘤細胞培養 31 2-5 腫瘤細胞種植 32 2-6 老鼠腫瘤高頻超音波影像掃描 32 2-7 老鼠腫瘤體內冷光影像 35 2-8 腫瘤組織切片 37 2-9 統計分析 37 第3章 實驗結果 38 3-1 冷光素微氣泡對比劑分析量測 38 3-1-1 庫爾特粒徑分析儀之超音波對比劑粒徑分析結果 38 3-1-2 動態光散色儀之超音波對比劑粒徑分析結果 40 3-1-3 酵素免疫分析儀頻譜分析及包覆量計算結果 42 3-1-4 冷光素微氣泡對比劑球型影像 45 3-2 仿體外灌注區高頻超音波影像 46 3-3 腫瘤細胞體外冷光影像 49 3-4 小動物體內高頻超音波影像 52 3-5 小動物體內冷光影像 56 3-6 腫瘤組織分析 66 第4章 討論 68 第5章 結論與未來展望 70 參考文獻 71 作者簡介 80

    [1] 李嘉明、李玉華,新超音波醫學1 : 醫用超音波的基礎,合計圖書出版社,2003。
    [2] 陳思嘉,靶向超音波於血栓溶解之研究,國立台灣大學電機資訊學院生依電子與資訊學研究所碩士論文,2009。
    [3] 王嘉弘,高頻超音波驅動電路設計在生醫應用之研究,國立暨南國際大學生物醫學科技研究所碩士論文,2006。
    [4] Douglas A. Christensen, Wiley, Ultrasonic Bioinstrumentation, 1988.
    [5] 伍嘉文,多種模式超音波驅動電路設計於生物醫學應用,國立暨南國際大學生物醫學科技研究所碩士論文,2006。
    [6] Kaufman JJ, Popp H, Chiabrea A, Pilla AA. “The effect of ultrasound on the electrical impedance of biological cells,” IEEE engineering in medicine & biology society 10th annual international conference, Vol. 2, No. 6, pp. 753-754, 1988.
    [7] Levy D , Kost J, Meshulam Y, Langer R. “Effect of ultrasound on transdermal drug delivery to rats and guinea pigs,” The Journal of Clinical Investigation, Vol.83, No.2, pp.2074-2078, 1989.
    [8] Tezel A, Sens A, Tuchscherer J, Mitragotri S. “Synergistic effect of low frequency ultrasound and surfactants on skin permeability,” Journal of Pharmaceutical Sciences, Vol.91, No.1, pp.91–100, 2002.
    [9] Kokubu T, Matsui n, Fujioka H, Tsundan M, Mizuno k. “low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of Cyclooxygenase – 2 mRNA in mouse osteoblasts,” Biochemical and Biophysical Research Communications, Vol. 256, No. 2, pp. 284-287, 1999.
    [10] ter Haar G. “High intensity focused ultrasound for the treatment of tumors,” Echocardiography, Vol. 18 ,No. 4, pp. 317-322 , 2001.
    [11] ter Haar G, Sinnett D, Rivens I. ”High intensity focused ultrasound—a surgical technique for the treatment of discrete liver tumours,” Phys Med Biol., Vol. 34, No. 11, pp. 1743-1750, 1989.
    [12] Chaussy C , Thuroff S. “Results and side effects of high-intensity focused ultrasound in localized prostate cancer,” J Endourol.,Vol.15, No.4, pp. 437-440, 2001.
    [13] 王鴻偉,使用三倍頻發射相位法對比劑諧波影像,國立台灣科技大學電機工程系碩士論文,2008。
    [14] 謝依峻,組織背景抑制於諧波對比劑偵測,國立台灣科技大學電機工程系碩士論文,2008。
    [15] 盧聖介,包覆空氣微脂體於高頻超音波影像與聲學非線性性質研究與應用,國立清華大學生醫工程與環境科學研究所碩士學位論文,2008。
    [16] Foster FS, Pavlin CJ, Harasiewicz KA, Christopher DA, Turnbull DH. "Advances in Ultrasound Biomicroscopy," Ultrasound Med. Biol., Vol. 26, No. 1, pp. 1-27, 2000.
    [17] Christensen DA., Ultrasonic Bioinstrumentation, New York: Wiley, 1998.
    [18] Miller AJ. “Scanning Acoustic Microscopy in Eletronics Research” IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 32, No. 2, pp.320-324, 1985.
    [19] Turnbull DH, Starkoski BG, Harasiewicz KA, Semple JL, From L, Gupta AK, Sauder DN, Foster FS. ”A 40-100 MHz B-scan Ultrasound backscatter skin imaging” Ultrasound in Med.&Biol., Vol. 21, No. 1, pp. 79-88, 1995.
    [20] Passmann C, Ermert H. “Adaptive 150MHz Ultrasound Imaging of the Skin and the Eye using an Optimal combination of Shor Pulse Mode and Pulse Compression Mode” IEEE Ultrasonics Symposium.,Vol. 186, pp.173-6, 1995.
    [21] Knspik DA, Starkoski B, Pavlin CJ, Foster FS. ”A 100-200 MHz Ultrasound Biomicroscope.” IEEE. Ultras. Ferroelectrics, and Frequency Control, Vol. 47, No. 6, pp. 1540-9, 2000.
    [22] Pavlin CJ and Foster FS.,Ultrasound Biomicroscothe Eye. Springer-Verlag Press 1995.
    [23] 何祚明,高頻超音波影像系統,國立台灣大學電機工程學研究所碩士論文,2002。
    [24] 陳彥甫,超音波小動物影像之血流參數計算及應用,國立台灣大學電機工程學研究所碩士論文,2003。
    [25] Tinkov S, Bekeredjian R, Winter G, Coester C. “Microbubbles as ultrasound triggered drug carriers.” J Pharm Sci, Vol. 98, No. 6, pp. 1935–61, 2009.
    [26] Hernot S, Klibanov AL. “Microbubbles in ultrasound-triggered drug and gene delivery.” Adv Drug Deliv Rev, Vol. 60, No. 10, pp. 1153–66, 2008.
    [27] 賴俊延,超音波穴蝕效應於基因傳遞效率之研究,國立台灣大學電機工程學研究所碩士論文,2005。
    [28] Lauterborn W, Kurz T, Geisler R, Schanz D, Lindau O. “Acoustic cavitation, bubble dynamics and sonoluminescence. Ultrason Sonochem”. Vol. 14, No. 4, pp. 484-91, 2007.
    [29] Leighton TG., The acoustic bubble, London: Academic Press, 1994.
    [30] Emmer M, van Wamel A, Goertz DE, de Jong N. “The onest microbubble vibration,” Ultrasound in Med. & Biol., Vol.33, No. 6, pp.941–949, 2007.
    [31] Miller DL, Bao S, Gies RA, Thrall BD. ”Ultrasonic enhancement of gene transfection in murine melanoma tumors” Ultrasound Med Biol. Vol. 25, No. 9, pp.1425-30, 1999.
    [32] Chang PH, Shung KK, Wu SJ. “Second harmonic imagingand harmonic Doppler measurements with AlbunexR,” IEEE Trans.Ultrason., Ferroelect., Freq. Contr., Vol. 42, No. 6, pp. 1020–1027, 1995.
    [33] de Jong N. “Improvements in ultrasound contrast agents,” IEEE Eng.Med. Biol., Vol. 15, No. 6, pp. 72–82, 1996.
    [34] Shi WT, Forsberg F. “Ultrasonic characterization of the nonlinear properties of contrast microbubbles,” Ultrasound Med. Biol., Vol. 26, No. 1, pp. 93–104, 2000.
    [35] Chomas JE, Dayton P, Allen J, Morgan K, Ferrara KW. “Mechanisms of contrast agent destruction,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., Vol. 48, No. 1, pp. 232-248, 2001.
    [36] Greenleaf WJ, Bolander, ME, Sarkar G, Goldring MB, Greenleaf JF. “Artificial cavitation nuclei significantly enhance acoustically induced cell transfection,” Ultrasound in Med. & Biol., Vol. 24, No. 4, pp. 587-595, 1998.
    [37] Wyber, JA, Andrews J, D’Emanuele A. “The use of sonication for the efficient delivery of plasmid DNA into cells,” Pharm. Res. Vol. 14, No. 6, pp. 750-756, 1997.
    [38] Miller MW, Miller DL, Brayman AA. “A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective,” Ultrasound in Med. & Biol., Vol. 22 , No. 9, pp. 1131-1154, 1996.
    [39] Weiss P. “Shrimps spew bubbles as hot as the sun,” Science News, Vol. 160, No. 14, pp. 213, 2001
    [40] Chen WS, Lu X, Liu Y, Zhong P. ”The effect of surface agitation on ultrasound-mediated gene transfer in vitro.” J Acoust Soc Am,.Vol. 116,No. 4, pp. 2440-50 , 2004.
    [41] Francis CW, Blinc A, Lee S, Cox C. ” Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots.” Ultrasound Med Biol, Vol.21, No. 3, pp. 419-24, 1995.
    [42] Everbach EC, Francis CW. “Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz”. Ultrasound Med Biol, Vol. 26,No. 7, pp. 1153-60, 2000.
    [43] Li P, Cao LQ, Dou CY, Armstrong WF, Miller D. “Impact of myocardial contrast echocardiography on vascular permeability: an in vivo dose response study of delivery mode, pressure amplitude and contrast dose.” Ultrasound Med Biol, Vol. 29, No. 9, pp. 1341–1349, 2003.
    [44] Skyba DM, Price RJ, Linka AZ, Skalak TC, Kaul S. “Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue.” Circulation, Vol. 98, No. 4, pp. 290–293, 1998.
    [45] Miller DL, Quddus J. “Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice.” Proc Natl Acad Sci USA, Vol. 97, No. 18, pp. 10179–10184, 2000.
    [46] Ay T, Havaux X, Van Camp G, Campanelli B, Gisellu G, Pasquet A, Denef JF, Melin JA, Vanoverschelde JL. “Destruction of contrast microbubbles by ultrasound: effects on myocardial function, coronary perfusion pressure, and microvascular integrity.” Circulation, Vol. 104, No. 4, pp. 461–466, 2001.
    [47] Miller DL, Gies RA. “Gas-body-based contrast agent enhances vascular bioeffects of 1.09 MHz ultrasound on mouse intestine.” Ultrasound Med Biol, Vol. 24, No. 8, pp. 1201–1208, 1998.
    [48] Li P, Armstrong WF, Miller DL. “Impact of myocardial contrast echocardiography on vascular permeability: comparison of three different contrast agents.” Ultrasound Med Biol, Vol. 30, No. 1, pp. 83–91, 2004.
    [49] Wible Jr. JH, Galen KP, Wojdyla JK, Hughes MS, Klibanov AL, Brandenburger GH. “Microbubbles induce renal hemorrhage when exposed to diagnostic ultrasound in anesthetized rats.” Ultrasound Med Biol, Vol. 28, No. 11-12, pp. 1535–1546, 2002.
    [50] Miller DL, Li P, Gordon D, Armstrong WF. “Histological characterization of microlesions induced by myocardial contrast echocardiography.” Echocardiography, Vol. 22, No. 1, pp. 25–34, 2005.
    [51] Miller DL, Li P, Dou C, Gordon D, Edwards CA, Armstrong WF. “Influence of contrast agent dose and ultrasound exposure on cardiomyocyte injury induced by myocardial contrast echocardiography in rats.” Radiology, Vol. 237, No. 1, pp. 137–143, 2005.
    [52] Miller DL, Dou C, Armstrong WF. “The influence of agent delivery mode on cardiomyocyte injury induced by myocardial contrast echocardiography in rats.” Ultrasound Med Biol, Vol. 31, No. 9, pp. 1257–1263, 2005.
    [53] Miller DL, Driscoll EM, Dou C, Armstrong WF, Lucchesi BR. “Microvascular permeabilization and cardiomyocyte injury provoked by myocardial contrast echocardiography in a canine model.” J Am Coll Cardiol, Vol. 47, No. 7, pp. 1464–1468, 2006.
    [54] Yang F, Li L, Li Y, Chen Z, Wu J, Gu N. “Superparamagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents,” Phys. Med. Biol,. Vol.53, No. 21, pp. 6129–6141, 2008.
    [55] Ao M, Wang Z, Ran H, Guo D, Yu J, Li A, Chen W, Wu W, Zheng Y. “ Gd-DTPA-loaded PLGA microbubbles as both ultrasound contrast agent and MRI contrast agent--a feasibility research,” Biomed. Mater. Res B Appl. Biomater., Vol.93, No. 2, 551–556, 2010.
    [56] Yang F, Li Y, Chen Z, Zhang Y, Wu J, Gu N. “Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging,” Biomaterials, Vol. 30, No 23-24, pp. 3882–3890, 2009.
    [57] Bekeredjian R, Grayburn PA, Shohet RV. “Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine,” J. Am. Coll. Cardiol. , Vol.45, No. 3, pp. 329–335, 2005.
    [58] Lanza, GM, Wickline SA, “Targeted ultrasonic contrast agents for molecular imaging and therapy”. Curr Probl Cardiol. Vol. 28, No. 12, pp. 625-53, 2003.
    [59] Ellegala DB, Leong-Poi H, Carpenter JE, Klibanov AL, Kaul S, Shaffrey ME, Sklenar J, Lindner JR. “Imaging tumor angiogenesis with contrast ultrasound andmicrobubbles targeted to alpha(v)beta3”. Circulation. Vol. 108, No. 3, pp. 336-41, 2003.
    [60] 朱新建、宋小磊、汪待發、白凈,螢光分子成像技術概述及研究進展,中國醫療器械雜誌, 32卷第1期,2008年。
    [61] Massoud TF, Gambhir SS. ”Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev, Vol. 17, No. 5 , pp. 545–80, 2003.
    [62] 郭文娟,非侵入式生醫斷層影像簡介,物理雙月刊,廿八卷四期,2006年。
    [63] 吳素慧,(一)過氧草酸酯化合物的化學發光研究( 二) 教具製作:能階量子化淺釋- 光激螢光與化學螢光(三)石油之螢光光譜分析與其對比,國立臺灣師範大學化學研究所碩士論文,1981。
    [64] 方泰山、吳素慧、陳素貞,能階量子化淺釋- 化學螢光與光激螢光,化學第三十九卷第二期, A31-37 ,1981。
    [65] 方泰山,化學能轉換成光能- 新高中基礎理化教材中一有趣題材,科學教育月刊第68 期,頁58 ,1982。
    [66] 尤宇農,以現代易經系統理論為基礎之基因工程方法與細胞呼吸研究,國立雲林科技大學資訊管理系碩士班碩士論文,2005。
    [67] 楊怡真,彩色圖說生物學-概念與關聯性,合記圖書出版社,台北,2003。
    [68] 鍾楊聰,生物學/第六版,台灣培生教育出版,台北,2005。
    [69] 鄧昌蔚,化學發光,科學教育月刊, 2002。
    [70] 關崇智,昆蟲生理學,南山堂出版社,台北,1987。
    [71] 朱耀沂、盧耽,昆蟲Q&A,天下遠見出版股份有限公司,台北,2010。
    [72] 游象淳,創傷弧菌藍色螢光蛋白在基因重組大腸桿菌生物取像系統應用之研究,國立成功大學化學工程學系碩士論文,2008。
    [73] Oba Y, Shintani T, Nakamura T, Ojika M, Inouye S. “Determination of the luciferin contents in luminous and non-luminous beetles.” Biosci Biotechnol Biochem, Vol. 72, No. 5, pp. 1384–7, 2008.
    [74] Kheirolomoom A, Kruse DE, Qin S, Watson KE, Lai CY, Young LJ, Cardiff RD, Ferrara KW. “Enhanced in vivo bioluminescence imaging using liposomal luciferin delivery system.” J Control Release, Vol. 141, No. 2, pp. 128–36, 2010.
    [75] http://pubs.acs.org/cen/science/84/8414biolum.html
    [76] 張怡、韓彧、趙春林,活體動物體內光學成像技術的研究進展,生命科學,第18卷第1期,2006年。
    [77] Contag PR. “Whole-animal cellular and molecular imaging to accelerate drug development.” Drug Discov Today, Vol.7, No. 10, pp. 555~562, 2002.
    [78] Jenkins DE, Oei Y, Hornig YS, Yu SF, Dusich J, Purchio T, Contag PR. “Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis.” Clin Exp Metastasis, Vol. 20, No. 8, pp. 733~744, 2003.
    [79] Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, Wagner G, Verdine GL, Korsmeyer SJ. “Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix.” Science, Vol. 305, No. 5689, pp. 1466~1470, 2004.
    [80] Jenkins DE, Oei Y, Hornig YS, Yu SF, Dusich J, Purchio T, Contag PR. “Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis.” Clin Exp Metastasis, Vol. 20, No. 8, pp. 733~744, 2003.
    [81] Wang X, Rosol M, Ge S, Peterson D, McNamara G, Pollack H, Kohn DB, Nelson MD, Crooks GM. “Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging.” Blood, Vol. 102, No.10, pp. 3478~3482, 2003.
    [82] Tseng JC, Levin B, Hurtado A, Yee H, Perez de Castro I, Jimenez M, Shamamian P, Jin R, Novick RP, Pellicer A, Meruelo D, “Systemic tumor targeting and killing by sindbis viral vectors.” Nat Biotechnol, Vol. 22, No.1, pp. 70~77, 2004.
    [83] Sato M, Johnson M, Zhang L, Zhang B, Le K, Gambhir SS, Carey M, Wu L. “Optimization of adenoviral vectors to direct highly amplified prostate-specific expression for imaging and gene therapy.” Mol Ther, Vol.8, No.5, pp. 726~737, 2003.
    [84] Rice BW, Cable MD, Nelson MB. “In vivo imaging of lightemitting probes.” J Biomed Opt, Vol. 6, No. 4, pp. 432~440, 2001.
    [85] Zhang N, Weber A, Li B, Lyons R, Contag PR, Purchio AF, West DB. “An inducible nitric oxide synthase-luciferase reporter system for in vivo testing of anti-inflammatory compounds in transgenic mice.” J Immunol, Vol. 170, No.12, pp. 6307~6319, 2003.
    [86] Zhang N, Fang ZX, Contag PR, Purchio AF, West DB. “Tracking angiogenesis induced by skin wounding and contact hypersensitivity using a Vegfr2-luciferase transgenic mouse.” Blood,Vol. 103,No 2, pp. 617~626, 2004.
    [87] Zhang F, Zhu L, Huang X, Niu G, Chen X . “Differentiation of Reactive and Tumor Metastatic Lymph Nodes with Diffusion-weighted and SPIO-Enhanced MRI.” Mol Imaging Biol. Vol.102, No. 2, pp. 334-41, 2012.
    [88] Hundt W, Schink C, Steinbach S, O'Connell-Rodwell CE, Mayer D, Burbelko M, Kiesling A, Guccione S. “Use of in vivo bioluminescence and MRI to determine hyperthermia-induced changes in luciferase activity under the control of an hsp70 promoter.” NMR Biomed. May 6. Vol.10, 2012
    [89] Chen YC, Jiang LP, Liu NX, Wang ZH, Hong K, Zhang QP. “P85, Optison microbubbles and ultrasound cooperate in mediating plasmid DNA transfection in mouse skeletal muscles in vivo Ultrason”. Sonochem. Vol. 18,No. 2,pp. 513–519, 2011.
    [90] Maruyama K, Suzuki R, Takizawa T, Utoguchi N, Negishi Y. “ Drug and gene delivery by "bubble liposomes" and ultrasound” Yakugaku Zasshi. Vol.127, No. 5, pp. 781–787, 2007.
    [91] Lin CY, Liu TM, Chen CY, Huang YL, Huang WK, Sun CK, Chang FH, Lin WL. “Quantitative and qualitative investigation into the impact of focused ultrasound with microbubbles on the triggered release of nanoparticles from vasculature in mouse tumors” J. Control. Release. Vol. 146, No. 3, pp. 291-8, 2010.
    [92] Lentacker I, Geers B, Demeester J, De Smedt SC, Sanders NN. “ Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved” Mol. Ther. Vol.18,No 1, pp. 101–8, 2010.
    [93] Tinkov S, Winter G, Coester C, Bekeredjian R. “New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: Part I--Formulation development and in-vitro characterization” J. Control. Release. Vol. 143, No. 1, pp. 143–150, 2010.
    [94] Tinkov S, Coester C, Serba S, Geis NA, Katus HA, Winter G, Bekeredjian R. “New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: In-vivo characterization” J. Control. Release. Vol. 148, No. 3, pp. 368–372, 2010.
    [95] Abdelmoneim SS, Bernier M, Scott CG, Dhoble A, Ness SA, Hagen ME, Moir S, McCully RB, Pellikka PA, Mulvagh SL. “ Safety of contrast agent use during stress echocardiography in patients with elevated right ventricular systolic pressure: a cohort study Circ”. Cardiovasc. Imaging. Vol. 3, No. 3, pp. 40–248, 2010.
    [96] Korpanty G, Grayburn PA, Shohet RV, Brekken RA. ”Targeting vascular endothelium with avidin microbubbles” Ultrasound Med. Biol. Vol. 31, No. 9, pp. 1279–1283, 2005.
    [97] Goertz DE, Yu JL, Kerbel RS, Burns PN, Foster FS, “High-frequency 3-D color-flow imaging of the microcirculation,” Ultrasound Med.Biol. Vol. 29, No. 1, pp. 39–51, 2003.
    [98] Suslick KS, Grinstaff MW, Kolbeck KJ, Wong M. “Characterization of sonochemically prepared proteinaceous microspheres” Ultrason. Sonochem. Vol. 1, pp. S65–68, 1994.
    [99] Liao AH, Cheng YC, Weng CH, Tsai TF, Lin WH, Yeh SH, Yeh WC, Li PC. “Characterization of malignant focal liver lesions with contrast-enhanced 40 MHz ultrasound imaging in hepatitis B virus X transgenic mice: a feasibility study” Ultrasonic. Imaging. Vol. 30, No. 4, pp. 203–216, 2008.
    [100] 楊粉榮、文洪杰、鍾勤,幾種粒徑量測定方法比較,Physics Examination and Testing,第23卷5期,2005。
    [101] https://www.beckmancoulter.com/wsrportal/wsrportal.portal?_nfpb=true&_windowLabel=UCM_RENDERER&_urlType=render&wlpUCM_RENDERER_path=%2Fwsr%2Findustrial%2Fproducts%2Fcoulter-counter-analyzers%2Fmultisizer-3%2Findex.htm
    [102] 潘善鵬、翁漢甫,動態光散射儀於奈米粉體粒徑之量測不確定分析,機械工業雜誌,288期,3月,96年。
    [103] 王子瑜、曹恒光,漫談布朗運動,物理雙月刊,廿七卷三期,六月,2005。
    [104] Nanoparticle Analyzer SZ-100S儀器使用操作手冊。
    [105] 酵素免疫分析儀儀器使用操作手冊。
    [106] 謝志宏,不同氣體於水中脈衝放電系統對染料溶液去色處理之研究,龍華科技大學工程技術研究所碩士學位論文,2008。
    [107] Grinberg O, Hayun M, Sredni B, Gedanken A. “Characterization and activity of sonochemically-prepared BSA microspheres containing Taxol--an anticancer drug” Ultrason. Sonochem. Vol. 14, No. 5, pp. 661–666, 2007.
    [108] Prospect S-Sharp儀器使用操作手冊。
    [109] 劉于綸,細胞顯微影像分割與運動分析,國立中央大學機械系研究所碩士論文,2004
    [110] 藍逸帆,米諾環素對膀胱癌細胞之生長抑制作用,慈濟大學藥物暨毒理學研究所碩士論文, 2008。
    [111] http://www1.cgmh.org.tw/lnkmic/about-2.htm
    [112] http://www.caliperls.com/
    [113] Lim E, Modi KD, Kim J. “In vivo bioluminescent imaging of mammary tumors using IVIS spectrum” J. Vis. Exp. Vol. 26, 2009.

    QR CODE