簡易檢索 / 詳目顯示

研究生: 張書懷
Shu-huai Chang
論文名稱: 富鐵氧化物之集塵灰運用於化學迴圈燃燒程序之反應性評估
Reactivity Evaluation on Electric Arc Furnace Dust for Chemical Looping Combustion Process
指導教授: 郭俞麟
Yu-lin Kuo
口試委員: 顧洋
Young Ku
曾堯宣
Yao-hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 115
中文關鍵詞: 化學迴圈燃燒程序電弧爐收集之集塵灰鋅鐵氧化物尖晶石結構固定床反應器流體化床反應器
外文關鍵詞: Electric Arc Furnace Dust, Zinc Ferrite, Fixed-Bed Reactor
相關次數: 點閱:235下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在全球溫室效應日趨嚴重之時,碳捕獲及封存之技術已成為各國政府致力的目標。其中,化學迴圈燃燒程序不需耗費大量成本與能源就可以把二氧化碳分離、捕捉且利用之優點。載氧體於化學迴圈燃燒程序中為影響整個反應是否連續進行的關鍵所在。但由於載氧體的製備是非常耗時也耗成本的,因此本研究將致力於電弧爐收集之集塵灰作為載氧體運用於化學迴圈燃燒程序之反應性評估。
由於電弧爐收集之集塵灰之主要的結晶相為ZnO與ZnFe2O4。因此本實驗使用Fe2O3和ZnO於900℃下鍛燒製備出鋅鐵氧尖晶石結構載氧體。並且藉由熱重分析儀分析其反應特性。可以觀察到ZnFe2O4於還原氣氛下會先被分解成ZnO及Fe2O3,然後再分別被還原成金屬Zn與金屬Fe,有鋅蒸氣釋出的問題存在。故本實驗使用Al2O3與ZnFe2O4於高溫1100℃進行鍛燒,將會產生ZnAl2O4作為惰性擔體,並於750℃進行20圈還原-氧化反應,結果顯示,ZnAl2O4於750℃可以有效抑制鋅蒸氣釋出的問題,使其能維持良好之反應穩定性。將ZnFe2O4與Al2O3製備成ZnFe2O4/Al2O3錠材改以固定床反應器進行20圈之還原-氧化,亦具有相當優良之穩定性。
藉由ZnFe2O4之最佳製備參數及操作條件,將電弧爐收集之集塵灰搭配氧化鋁惰性擔體製備成EAFD/Al2O3錠材及EAFD/Al2O3粉末,分別應用以固定床反應器及流體化床反應器。其中,EAFD/Al2O3錠材於固定床反應器進行於750℃連續20圈之還原-氧化反應,結果顯示雖然EAFD/Al2O3錠材因透過燒結導致過於緻密,造成於前三圈之還原-氧化反應無法將CO完全轉化成CO¬2,但隨著圈數增加,比表面積增大,其CO2之產率可以一直維持在95%。EAFD/Al2O3粉末應用於流體化床時,以2%合成氣進行50圈之還原氧化反應,CO¬2產率可以維持在88%,具有相當優良之穩定性。故可以得知電弧爐收集之集塵灰搭配氧化鋁惰性擔體應用於化學迴圈燃燒程序是相當具有發展性的。


As the global warming issue worsens gradually, the Carbon Capture and Storage (CCS) techniques have been a goal to be committed for each government worldwide. Among the techniques of CCS, Chemical Looping Combustion (CLC) possess the advantage of not only low cost, but also less power consumption. Oxygen carrier plays a decisive role on the entire CLC process for the reaction to be continuous, but unfortunately, the preparation of Oxygen carrier is time consuming and costly. Therefore, the aim of this study is to assess the reaction using Electric Arc Furnace Dust (EAFD) as the Oxygen carrier of CLC process.
Since ZnO and ZnFe2O4 are the two main crystalline phase of EAFD, spinel structure ZnFe2O4 Oxygen carrier was formed under 900℃ calcination from Fe2O3 and ZnO in the experient. Thermogravimetric analyzer was utilized to perform quantitative and qualitative observation on characteristics of the reaction. ZnFe2O4 was seen firstly to be decomposed into ZnO and Fe2O3 under reducing atmosphere, and then both were reduced to metal Zn and Fe, respectively. This results an issue to the existence of zinc vapor due its low gasification temperature. Hence, Al2O3 and ZnFe2O4 were calcined under 1100℃ to form ZnAl2O4 as insert support, and 20 redox reaction cycles were applied under 750℃. As a result, ZnAl2O4 inhibited the issue of zinc vapor release in order to maintain favorable reaction condition. Moreover, applying ZnFe2O4/Al2O3 pellet into Fixed-Bed Reactor (FxBR), carrying out 20 redox cycles also show favorable features.
EAFD and Al2O3 were made into EAFD/Al2O3 pellet and EAFD/Al2O3 powder under optimized parameters and process, and then applied to FxBR and Fluidized Bed Reactor (FzBR), respectively. The result of EAFD/Al2O3 pellet being applied to FxBR shows that sintering have caused it too dense, which leads to difficulties for CO transforming into CO¬2 within first 3 redox cycles. Hence, as the number of redox cycles increase, the specific surface area (SSA) increases, and brings about maintaining CO2 yield for up to 95%. Whereas the result of EAFD/Al2O3 powder applied to FzBR carrying on 50 redox cycles with 2% syngas, shows that CO¬2 yield could maintain for up to 88%. As a result, EAFD and inert support possess great potential in the application of CLC process.

致謝 I 中文摘要 II 英文摘要 III 目錄 V 圖索引 VIII 表索引 XII 第一章 緒論 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧 2.1 化學迴圈燃燒程序 5 2.2 載氧體之評估 7 2.2.1 物理特性 7 2.2.2 熱力學特性 7 2.2.3 環境友好性 10 2.2.4 成本 10 2.3 常見之載氧體 11 2.3.1 鐵系(Fe)載氧體 11 2.3.2 銅系(Cu)載氧體 16 2.3.3 鎳系(Ni)載氧體 20 2.3.4 其餘常見載氧體 23 2.3.5 複合型載氧體 27 2.3.6 尖晶石結構載氧體 33 2.3.7 天然礦石當作載氧體 37 2.4 惰性擔體的選擇 39 2.5 燃料之種類 40 2.6 反應器之設計 42 2.7 電弧爐收集之集塵灰(Electric Arc Furnace Dust) 45 2.7.1 國內集塵灰之來源及成分 45 2.7.2集塵灰應用於化學迴圈燃燒程序 49 第三章 實驗設備與程序 3.1 實驗藥品 52 3.2 實驗設備與分析儀器 52 3.2.1 X光繞射儀(XRD) 53 3.2.2 比表面積分析儀(BET) 53 3.2.3 掃描式電子顯微鏡(SEM) 54 3.2.4 破碎強度測試儀 54 3.2.5 熱重分析儀(TGA) 54 3.2.6 固定床反應器(FxBR) 56 3.2.7 流體化床反應器(FzBR) 57 3.3 實驗架構及規劃 50 3.4 載氧體製備 59 3.4.1 鋅鐵氧尖晶石結構載氧體的製備 60 3.4.2 鋅鐵氧尖晶石結構載氧體搭配氧化鋁惰性擔體 60 3.4.3 電弧爐收集之集塵灰搭配氧化鋁惰性擔體 60 第四章 結果與討論 4.1 鋅鐵氧尖晶石結構載氧體之材料分析 62 4.2 鋅鐵氧尖晶石結構載氧體搭配氧化鋁惰性擔體運用於化學迴圈燃燒程序 66 4.2.1 不同鍛燒溫度之材料分析 66 4.2.2 還原特性分析 70 4.2.3 多圈還原-氧化性能分析 73 4.3 固定床反應器之反應性測試 75 4.3.1 鋅鐵氧尖晶石結構載氧體搭配氧化鋁惰性擔體應用於固定床反應器 75 4.3.2 電弧爐收集之集塵灰搭配氧化鋁惰性擔體應用於固定床反應器 84 4.4 電弧爐收集之集塵灰添加氧化鋁惰性擔體應用於流體化床反應器 93 4.4.1 合成氣濃度對反應性之影響 95 4.4.1 流體化床床反應器之多迴圈反應性測試 99 第五章 結論與未來展望 5.1 鋅鐵氧尖晶石結構載氧體搭配氧化鋁惰性擔體運用於化學迴圈燃燒程序 104 5.2 電弧爐收集之集塵灰搭配氧化鋁惰性擔體進行運用於化學迴圈燃燒程序 105 5.3 未來展望 106 第六章 參考文獻 107

1. Earth System Research Laboratory website http://www.esrl.noaa.gov/gmd/aggi/。
2. 陳巾眉、蔡麗伶,「氣候變遷Q&A:溫室氣體會滯留在大氣中多久」,環境資源中心 (2012)。
3. N.L. Panwar, S.C Kaushik, Surendra Kothari,“Role of renewable energy sources in environmental protection: A review”Renewable and Sustainable Energy Reviews,Vol. 15,pp.1513-1524(2011)
4. M.F. Demirbas,“Electricity Production Using Solar Energy”Energy Sources PartA, Vol. 29, pp.563-569
5. 談駿嵩,「國內CCSU 技術研發現況與成本分析暨國內產業具體扶植政策報告」,國立清華大學能源產業科技策略研究中心 (2012)。
6. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R. D. Srivastava, “Advances in CO2 Capture Technology ─ The U.S. Department of Energy’s Carbon Sequestration Program,” International Journal of Greenhouse Gas Control, Vol. 2, pp. 9-20 (2008).
7. National Energy Technology Laboratory, “DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap” pp. 41 (2010).
8. H. Fang, L. Haibin, and Z. Zengli, “Advancements in Development of Chemical-Looping Combustion: A Review,” International Journal of Chemical Engineering, pp. 1-16 (2009).
9. J. Ada’nez, L. F. de Diego, F. Garcı’a-Labiano, P. Gaya’n, and A. Abad, “Selection of Oxygen Carriers for Chemical-Looping Combustion,” Energy & Fuels, Vol. 18, pp. 371-377 (2004).
10. K. S. Kang, C. H. Kim, K. K. Bae, W. C. Cho, S. H. Kim, C. S. Park, “Oxygen-Carrier Selection and Thermal Analysis of the Chemical-Looping Process for Hydrogen Production,” International journal of hydrogen energy, Vol. 35, pp. 12246-12254 (2010).
11. P. Cho, T. Mattisson, A. Lyngfelt, “Comparison of Iron-, Nickel-, Copper- and Manganese-Based Oxygen Carriers for Chemical-Looping Combustion,” Fuel, Vol. 83, pp. 1215–1225 (2004).
12. M. M. Hossain, H. I. de Lasa, “Chemical-Looping Combustion (CLC) for Inherent CO2 Separations — A Review,” Chemical Engineering Science, Vol. 63, pp. 4433-4451 (2008).
13. 張添晉、王錫福、王玉瑞,「廢棄物資源化技術暨附加價值提昇研究計畫」,行政院環境保護署(2006)。
14. J-J. Lee, C-I. Lin, H-K. Chen, “Carbothermal Reduction of Zinc Ferrite,” Metallurgical and Materials Transactions B, Vol. 32, pp. 1033-1040 (2000).
15. 陳錫圭,「碳熱還原鋅鐵礦之動力學研究」,行政院國家科學委員會專題研究計畫成果報告」(2000)
16. H. J. Richter, K. F. Knoche, “Reversibility of Combustion Process, Efficiency and Costing,” ACS Symposium Series, Vol. 235, pp. 71-85 (1983).
17. M. Ishida, D. Zheng, T. Akehata, “Evaluation of a Chemical-Looping-Combustion Power-Generation System by Graphic Exergy Analysis,” Energy, Vol. 12, pp. 147-154 (1987).
18. 朱敬平,「化學迴圈燃燒技術發展概況簡介」,中興工程季刊第110期,pp. 63-72 (2011)。
19. T. Mattisson, Q. Zafar, M Johansson, A. Lyngfelt,“Chemical-Looping Combustion as a New CO2 Management Technology”First Regional Symposium on Carbon Management (2006).
20. J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L. F. de Diego, “Progress in Chemical-Looping Combustion and Reforming technologies,” Progress in Energy and Combustion Science, Vol. 38, pp. 215-282 (2012).
21. Mineral commodity summaries. U.S. Geological Survey, ISBN 978-1-4113-2666-8 (2010).
22. J. Bessieres, A. Bessieres, J. J. Heizmann, “Iron Oxide Reduction Kinetics by Hydrogen,” International Journal of Hydrogen Energy,” Vol. 5, pp. 585-595 (1980).
23. H. Y. Lin, Y. W. Chen, C. Li, “The Mechanism of Reduction of Iron Oxide by Hydrogen,” Thermochimica Acta, Vol. 400, pp. 61-67 (2003).
24. W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, W. Maniukiewicz, “Reduction Behavior of Iron Oxides in Hydrogen and Carbon Monoxide Atmospheres,” Applied Catalysis A: General, VOL. 326, PP. 17-27 (2007).
25. J.A. Pena, E. Lorente, E. Romero, J. Herguido, “Kinetic study of the redox process for storing hydrogen Reduction stage” Catalysis Today, Vol. 116, pp. 439-444, (2006).
26. A. Pineau, N. Kanari, I. Gaballah, “Kinetics of Reduction of Iron Oxides by H2 Part I. Low Temperature Reduction of Hematite,” Thermochimica Acta, Vol. 447, pp. 89-100 (2006).
27. T. Song, L-H. Shen, J. Xiao, Z-P. Gao, H-M. Gu, S-W. Zhang, “Characterization of Hematite Oxygen Carrier in Chemical-Looping Combustion at High Reduction Temperature,” Journal of Fuel Chemistry and Technology, Vol. 39, pp. 567-574 (2011).
28. A. Abad, F. Garcia-Labiano, L. F. de Diego, P. Gayan, J. Adanez, “Reduction Kinetics of Cu-, Ni- and Fe-Based Oxygen Carriers Using Syngas (CO+H2) for Chemical Looping Combustion,” Energy & Fuels, Vol. 21, pp. 184-153 ( 2007).
29. H. Leion, T. Mattisson, A. Lyngfelt, “The Use of Petroleum Coke as Fuel in Chemical-Looping Combustion,” Fuel, Vol. 86, pp. 1947-1958 (2007).
30. Q. Zafar, T. Mattisson, B. Gevert, “Redox Investigation of Some Oxides of Transition-State Metals Ni, Cu, Fe, and Mn Supported on SiO2 and MgAl2O4,” Energy & Fuels, Vol. 20, pp. 34-44 (2006).
31. Q. Zafar, T. Mattisson, B. Gevert, “Integrated Hydrogen and Power Production with CO2 Capture Using Chemical-Looping Reforming-Redox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 Using SiO2 as Support,” Industrial & Engineering Chemistry Research, Vol. 44, pp. 3485-3496 (2005).
32. M. M. Azis, E. Jerndal, H. Leion, T. Mattisson, A. Lyngfelt, “On the Evaluation of Synthetic and Natural Ilmenite Using Syngas as Fuel in Chemical-Looping Combustion (CLC),” Chemical Engineering Research and Design, Vol. 88, pp. 1505-1514 (2010).
33. 劉祐誠,「以合成氣為燃料評估Fe2TiO5載氧體在化學迴圈程序的應用」,碩士論文,國立台灣科技大學(2011)。
34. D-Q. Chen, L-H. Shen, J. Xiao, T. Song, H-M. Gu, S-W. Zhang, “Experimental Investigation of Hematite Oxygen Carrier Decorated with NiO for Chemical-Looping Combustion of Coal,” Journal of Fuel Chemistry and Technology, Vol. 40, pp. 267-272 (2012).
35. L. F. de Diego, F. Garcia-Labiano, J. Adanez, P. Gayan, A. Abad, B. M. Corbella, J. M. Palacios, “Development of Cu-Based Oxygen Carriers for Chemical-Looping Combustion,” Fuel, Vol. 83, pp. 1749-1757 (2004).
36. L. F. de Diego, F. Garcvia-Labiano, J. Ada nez, P. Gayan, A. Abad, B.M. Corbella, J.M. Palacios,“Development of Cu-based oxygen carriersfor chemical-looping combustion”Fuel, Vol. 83 pp.1749-1757(2004).
37. J. Adanez, P. Gayan, J. Celaya, L.F. de Diego, F. Garcia-Labiano, A. Abad,“Chemical Looping Combustion in a 10 kWth Prototype Using a CuO/Al2O3 Oxygen Carrier: Effect of Operating Conditions on Methane Combustion”Insustrial & Engineering Chemistry Research, Vol. 45,pp.6075-6080.
38. M. Arjmand, A-M. Azad, H. Leion, T. Mattisson, A. Lyngfelt, “Evaluation of CuAl2O4 as an Oxygen Carrier in Chemical-Looping Combustion (CLC)”, Industrial & Engineering Chemistry Research, Vol. 51, pp. 13924-13934 (2012).
39. M. Arjmand, “Copper in Chemical-Looping Combustion (CLC) and Chemical-Looping with Oxygen Uncoupling (CLOU),” Department of Chemical and Biological Engineering Chalmers University of Technology (2012).
40. P. Gay’an, L. F. de Diego, F. Garc’ıa-Labiano, J. Ad’anez, A. Abad, and C. Dueso, “Effect of Support on Reactivity and Selectivity of Ni-Based Oxygen Carriers for Chemical-Looping Combustion,” Fuel, Vol. 87, pp. 2641–2650 (2008)
41. D-Q. Chen, L-H. Shen, J. Xiao, T. Song, H-M. Gu, S-W. Zhang, “Experimental Investigation of Hematite Oxygen Carrier Decorated with NiO for Chemical-Looping Combustion of Coal,” Journal of Fuel Chemistry and Technology, Vol. 40, pp. 267-272 (2012).
42. P. Gay’an, L. F. de Diego, F. Garc’ıa-Labiano, J. Ad’anez, A. Abad, and C. Dueso, “Effect of Support on Reactivity and Selectivity of Ni-Based Oxygen Carriers for Chemical-Looping Combustion,” Fuel, Vol. 87, pp. 2641–2650 (2008)
43. Z. Gao, L. Shen, J. Xiao, C. Qing, Q. Song, “Use of Coal as Fuel for Chemical-Looping Combustion with Ni-Based Oxygen Carrier,” Industrial & Engineering Chemistry Research, Vol. 47, pp. 9279-9287 (2008).
44. E. Jerndal, T. Mattisson, A. Lyngfelt, “Investigation of Different NiO/NiAl2O4 Particles as Oxygen Carriers for Chemical-Looping Combustion,” Energy & Fuels, Vol. 23, pp. 665-676 (2009).
45. L. Shen, J. Wu, Z. Gao, J. Xiao, “Characterization of Chemical Looping Combustion of Coal in a 1 kWth Reactor with a Nickel-Based Oxygen Carrier,” Combustion and Flame, Vol. 157, pp. 934-942 (2010).
46. L. Shen, J. Wu, Z. Gao, J. Xiao, “Reactivity Deterioration of NiO/Al2O3 Oxygen Carrier for Chemical Looping Combustion of Coal in a 10 kWth Reactor,” Combustion and Flame, Vol. 156, pp. 1377-1385 (2009).
47. M. Johansson, T. Mattisson, A. Lyngfelt, “Use of NiO/NiAl2O4 Particles in a 10 kW Chemical-Looping Combustor,” Industrial and Engineering Chemistry Research, Vol. 45, pp. 5911-5919 (2006).
48. L. F. de Diego, M. Ortiz, J. Adanez, F. Garcia-Labiano, A. Abad, P. Gayan, “Synthesis Gas Generation by Chemical-Looping Reforming in a Batch Fluidized Bed Reactor Using Ni-Based Oxygen Carriers,” Chemical Engineering Journal, Vol. 144, pp. 289-298 (2008).
49. H. Jina, M. Ishida, “Reactivity study on a novel hydrogen fueledchemical-looping combustion”International Journal of Hydrogen Energy, Vol.26,pp.889-894(2001)。
50. 劉書銜,「由集塵灰及粗氧化鋅以碳熱還原法合成一維氧化鋅」,碩士論文,國立台北科技大學(2006)。
51. 吳貞瑩,「以Fe2O3/SiO2 載氧體在高溫化學環路燃燒一氧化碳及氫氣之研究」,碩士論文,國立成功大學(2010)。
52. E.R. Stobbe, B.A. de Boer, J.W. Geus, “The Reduction and Oxidation Behaviour of Manganese Oxides,” Catalysis Today, Vol. 47, pp. 161-167 (1999).
53. Q. Zafar, A. Abad, T. Mattisson, B. Gevert, M. Strand, “Reduction and Oxidation Kinetics of Mn3O4/Mg-ZrO2 Oxygen Carrier Particles for Chemical-Looping Combustion,” Chemical Engineering Science, Vol. 62, pp. 655-666 (2007).
54. T. Mattisson, A. Jardnas, A. Lyngfelt, “Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen - Application for Chemical Looping Combustion,” Energy & Fuels, Vol. 17, pp. 643-651 (2003).
55. H. Tian, Q. Guo, J. Chang, “Investigation into Decomposition Behaviour of CaSO4 in Chemical-Looping Combustion,” Energy & Fuels, Vol. 22, pp. 3915-3921 (2008).
56. L. Shen, M. Zheng, J. Xiao, R. Xiao, “A mechanistic investigation of a calcium-base oxygen carrier for chemical looping combustion”Combution and Flame, Vol. 154,pp.489-506(2008).
57. 馬嘉隆,「化學迴圈程序之複合鐵鎳金屬載氧體製備」,碩士論文,國立台灣科技大學(2011).
58. S. Wang, G. Wang, F. Jiang, M. Luo, H. Li, “Chemical Looping Combustion of Coke Oven Gas by Using Fe2O3/CuO with MgAl2O4 as Oxygen Carrier,” Energy & Environmental Science, Vol. 3, pp. 1353-1360 (2010).
59. A. Lambert, C. Delquie, I. Clemencon, E. Comte, V. Lefebvre, J. Rousseau, B. Durand, “Synthesis and Characterization of Bimetallic Fe/Mn Oxides for Chemical Looping Combustion,” Energy Procedia, Vol. 1, pp. 375-381 (2009).
60. H. Jin, T. Okamoto, M. Ishida, “Development of a Novel Chemical-Looping Combustion: Synthesis of a Looping Material with a Double Metal Oxide of CoO-NiO,” Energy & Fuels, Vol. 12, pp. 1272-1277 (1998).
61. J. Adanez, F. Garcia-Labiano, L. F. de Diego, P. Gayan, J. Celaya, A. Abad, “Nickel-Copper Oxygen Carriers to Reach Zero CO and H2 Emissions in Chemical-Looping Combustion,” Industrial & Engineering Chemistry Research, Vol. 45, pp. 2617-2625 (2006).
62. A. Steinfeld, “Solar Thermochemical Production of Hydrogen – A Review,” Solar Energy, Vol. 78, pp. 603-615 (2005).
63. H. Kaneko, T. Kodama, N. Gokon, Y. Tamaura, K. Lovegrove, A. Luzzi, “Decomposition of Zn-ferrite for O2 Generation by Concentrated Solar Radiation,” Solar Energy, Vol. 76, pp. 317-322 (2004).
64. B. Wang, R. Yan, H. Zhao, Y. Zheng, Z. Liu, C. Zheng, “Investigation of Chemical Looping Combustion of Coal with CuFe2O4 Oxygen Carrier,” Energy & Fuels, Vol. 25, pp. 3344-3354 (2011).
65. 徐維懋,「鎳鐵氧化物尖晶石結構載氧體之材料特性與惰性擔體之選用應用於化學迴圈性能評估」,碩士論文,國立台灣科技大學(2012)。
66. M. Ryden, M. Johansson, E. Cleverstam, A. Lyngfelt, T. Mattisson, “Ilmenite with Addition of NiO as Oxygen Carrier for Chemical-Looping Combustion,” Fuel, Vol. 89, pp. 3523-3533 (2010).
67. H. Leion, A. Lyngfelt, M. Johansson, E. Jerndal, T. Mattisson, “The Use of Ilmenite as an Oxygen Carrier in Chemical-Looping Combustion,” Chemical Engineering Research and Design, Vol. 8 6, pp. 1017-1026 (2008).
68. T. Song, J. Wu, H. Zhang, L. Shen, “Characterization of an Australia Hematite Oxygen Carrier in Chemical Looping Combustion with Coal,” International Journal of Greenhouse Gas Control, Vol. 11, pp. 326-336 (2012).
69. M. Ryden, M. Arjmand, “Continuous Hydrogen Production Via the Steam-Iron Reaction by Chemical Looping in a Circulating Fluidized-Bed Reactor,” International Journal of Hydrogen Energy, Vol. 37, 4843-4854 (2012).
70. 張紂微,「全球頁岩氣發展現況與趨勢」,能源知識庫,油氣探勘開發及技術研發計畫管理辦公室 (2012)。
71. 趙文衡,「頁岩氣革命影響全球能源布局」,能源知識庫,台灣經濟研究院 (2012)。
72. 林祖儀,「頁岩油真的可以拯救全世界?」,商業週刊,財經新聞儀點通 (2012)。
73. http://www.eia.gov/todayinenergy/detail.cfm?id=110, U.S. Energy Information Administration (2011)
74. Q Song, R Xiao, Z Deng, H Zhang, L Shen, J Xiao, M Zhang, “Chemical-Looping Combustion of Methane with CaSO4 Oxygen Carrier in a Fixed Bed Reactor,” Energy Conversion and Management, Vol. 49, pp. 3178-3187 (2008).
75. L. Shen, J. Wu, J. Xiao, Q. Song, R. Xiao, “Chemical-Looping Combustion of Biomass in a 10 kW Reactor with Iron Oxide as an Oxygen Carrier,” Energy & Fuels, Vol. 23, pp. 2498-2505 (2009).
76. P. Kolbitsch, J. Bolhar-Nordenkampf, T. Proll, H. Hofbauer, “Comparison of Two Ni-Based Oxygen Carriers for Chemical Looping Combustion of Natural Gas in 140 kW Continuous Looping Operation,” Industrial & Engineering Chemistry Research, Vol. 48, pp. 5542-5547 (2009).
77. 顧洋,邱炳嶔,「能源新技術–化學迴圈程序簡介」,化工技術第19卷第12期,pp. 132-145 (2011)。
78. F. Li, L. Fan, “Clean Coal Conversion Processes-Progress and Challenges,” Energy & Environmental Science, Vol. 1, pp. 248-267 (2008).
79. 陳偉聖,周瑋珊,吳俊毅,申永輝,蔡敏行,「台灣煉鋼集塵灰處理現況」,工業污染防制第116期 (2012)。
80. 羅鴻升,「含鋅集塵灰回收鋅、鐵及鉛之研究」,碩士論文,吳鳳技術學院(2009)。
81. M. H. Khedr, “Isothermal Reduction Kinetics at 900-1100℃ of NiFe2O4 Sintered at 1000-1200℃,” Journal of Analytical and Applied Pyrolysis, Vol. 73, pp. 123-129 (2005).
82. 黃薇臻,「電弧爐收集之集塵灰運用於化學迴圈燃燒程序的可行性評估」,碩士論文,國立台灣科技大學(2013) 。
83. 呂維明、戴怡得,「粉粒體粒徑量測技術」,高立圖書有限公司 (2004)。
84. Fogler, H. S.; Gurmen, M. N., “Elements of chemical reaction engineering”, Diffusion and Reaction in Porous Catalysts (4th ed), US: Pearson Education (2005).

QR CODE