簡易檢索 / 詳目顯示

研究生: Adi Tama Nugraha
Adi Tama Nugraha
論文名稱: 製備鈦銅複合纖維並應用於4-硝基苯酚之轉化
Fabrication of Titanium-Copper Composite Fibers with Tunable Composition for 4-Nitrophenol Conversion
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 王勝仕
Sheng-Shih Wang
李振綱
Cheng-Kang Lee
周秀慧
Shiu-Huey Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 61
中文關鍵詞: 電紡絲纖維合成鈦金屬觸媒4-硝基苯酚
外文關鍵詞: electrospinning, fibers, composite, titanium, copper, catalyst, 4-Nitrophenol
相關次數: 點閱:307下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

奈米結構的物質因為他們擁有獨特的特性,因此近年來被廣泛的討論。其中的特性是奈米纖維擁有較大的比表面積,因此在本實驗中,試著使用不同比例的鈦金屬與銅,以簡單和低成本的方法,利用電紡絲製備出鈦銅奈米纖維,並在空氣中進行鍛燒,而鈦銅奈米纖維的特徵是藉由感應偶和電漿原子發射光譜 (ICP-AES)、場發式電子顯微鏡 (FE-SEM)和X射線照射分析 (XRD)去進行分析,最後再進一步利用UV光放射催化將4-硝基苯酚轉換成4-氨基苯酚。
本實驗鍛燒的溫度在光轉換過程中占很重要的角色,而最佳的鍛燒溫度是設定在攝氏400℃,當鍛燒溫度升高超過400℃時,會產生較慢的催化活性;反之當溫度在400℃以下時,纖維結構還是屬於非晶狀。另一個有趣的發現是,當氧化銅 (CuO)被還原成銅 (Cu(0))時,反應速率會受影響而提升,而將氧化銅還原成銅的方法是將鈦銅奈米纖維浸泡在硼氫化鈉 (NaBH4)溶劑中,其中Ti/Cu(5.6)-400在進行氧化銅還原時,反應速率會從0.766提升到2.413 mmol g¬-1 min-1。本實驗結果顯現了非貴金屬觸媒對4-硝基苯酚轉化成4-氨基苯酚有良好的催化性質,可取代現在的貴重金屬觸媒。

Keywords:電紡絲;纖維;合成;鈦金屬;銅;觸媒;4-氨基苯酚


Nano-architecture materials such as nanofibers are extensively studied due to their unique characteristic such as large surface area. Here, in this study composite titanium-copper fibers with different titanium to copper ratio were fabricated by a simple and low cost method of electrospinning followed with calcinations in air. The resulted fibers were characterized by inductive coupled plasma atomic emission spectra (ICP-AES), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and further utilized as photocatalyst for conversion of 4-nitrophenol to 4-aminophenol under UV irradiation.
This study revealed calcination temperature played an important role on the photoconversion process, with the optimum calcination temperature was 400°C. Further increasing the calcination temperature beyond 400°C generated slower catalytic activity, while below 400°C the fibers were still amorphous. Another interesting finding was, by reducing the copper oxidation state, from CuO to Cu(0), a faster rate constant can be achieved. The rate constant was significantly increase from 0.776 to 2.413 mmol g-1 min-1 after reducing the copper oxidation state in Ti/Cu(5.6)-400 sample. The reduction of CuO to Cu(0) itself was done by immersing the composite titanium-copper fibers into NaBH4 solution. Therefore, this work demonstrated a non-noble metal catalyst with promising catalytic activity toward conversion of 4-nitrophenol to 4-aminophenol, to substitute the utilization of expensive noble metal in the present catalyst.

Keywords: Electrospinning; fibers; composite; titanium; copper; catalyst; 4-nitrophenol.

Abstract i 摘要 ii Acknowledgement iii Content iv List of Figures vi List of tables viii Chapter 1. Introduction 1 Chapter 2. Literature Review 4 2.1. Nanofibers 4 2.2. Electrospinning 5 2.3. Conversion of 4-nitrophenol to 4-aminophenol 6 2.4. Composite titanium-copper fibers as photocatalyst 7 Chapter 3. Experimental 10 3.1. Chemicals 10 3.1.1. Electrospinning solution 10 3.1.2. Reduction of Cu(II) to Cu(0) 11 3.1.3. Conversion of 4-nitrophenol to 4-aminophenol 11 3.2. Equipment and instruments 11 3.3. Experimental procedures 12 3.3.1. Preparation of titania and composite titania-copper (TiO2/CuO) fibers 12 3.3.2. Reduction of TiO2/CuO fibers to TiO2/Cu(0) fibers using NaBH4 13 3.3.3. Photocatalytic conversion of 4-nitrophenol to 4-aminophenol 13 3.4. Characterization techniques 14 3.4.1. Inductive Coupled Plasma Atomic Emission Spectra (ICP-AES) 14 3.4.2. X-Ray powder diffraction (XRD) 14 3.4.3. Field Emission Scanning Electron Microscopy (FE-SEM) 15 3.4.4. UV-Visible spectrophotometer 15 Chapter 4. Results and Discussion 16 4.1. Determination of titanium and copper content by ICP-AES 16 4.2. Surface morphology of composite titanium-copper fibers by FESEM 17 4.3. Crystallinity of composite titanium-copper fibers by XRD 21 4.4. Photocatalytic performance for the conversion of 4-nitrophenol to 4-aminophenol 25 4.4.1. Effects of calcination temperatures on the photocatalytic performance 25 4.4.2. Effects of titanium to copper ratio on photocatalytic performance 29 4.4.3. Effects of copper oxidation state on photocatalytic performance 31 4.4.4. Catalytic performance without UV irradiation 36 4.4.5. Catalyst recyclability 38 4.4.6. Catalyst activation energy 41 4.4.7. Catalytic mechanism 42 Chapter 5. Conclusions 43 References 44

[1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Advanced Materials, 15 (2003) 353-389.
[2] Z.L. Wang, Characterizing the Structure and Properties of Individual Wire-Like Nanoentities, Advanced Materials, 12 (2000) 1295-1298.
[3] D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, Journal of Applied Physics, 87 (2000) 4531-4547.
[4] H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, Y. Cui, Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode, Nano Letters, 10 (2010) 4242-4248.
[5] H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, Y. Cui, A transparent electrode based on a metal nanotrough network, Nat Nano, 8 (2013) 421-425.
[6] V.T. Le, H. Kim, A. Ghosh, J. Kim, J. Chang, Q.A. Vu, D.T. Pham, J.-H. Lee, S.-W. Kim, Y.H. Lee, Coaxial Fiber Supercapacitor Using All-Carbon Material Electrodes, ACS Nano, 7 (2013) 5940-5947.
[7] A. Yousef, N.A.M. Barakat, H.Y. Kim, Electrospun Cu-doped titania nanofibers for photocatalytic hydrolysis of ammonia borane, Applied Catalysis A: General, 467 (2013) 98-106.
[8] C. Sarkar, S.K. Dolui, Synthesis of copper oxide/reduced graphene oxide nanocomposite and its enhanced catalytic activity towards reduction of 4-nitrophenol, RSC Advances, 5 (2015) 60763-60769.
[9] M. Sun, H. Liu, Y. Liu, J. Qu, J. Li, Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction, Nanoscale, 7 (2015) 1250-1269.
[10] A. Yousef, M.M. El-Halwany, N.A.M. Barakat, M.N. Al-Maghrabi, H.Y. Kim, Cu0- doped TiO2 nanofibers as potential photocatalyst and antimicrobial agent, Journal of Industrial and Engineering Chemistry, 26 (2015) 251-258.
[11] M.T. Qamar, M. Aslam, I.M.I. Ismail, N. Salah, A. Hameed, Synthesis, Characterization, and Sunlight Mediated Photocatalytic Activity of CuO Coated ZnO for the Removal of Nitrophenols, ACS Applied Materials & Interfaces, 7 (2015) 8757-8769.
[12] S.M. El-Sheikh, A.A. Ismail, J.F. Al-Sharab, Catalytic reduction of p-nitrophenol over precious metals/highly ordered mesoporous silica, New Journal of Chemistry, 37 (2013) 2399-2407.
[13] T.R. Mandlimath, B. Gopal, Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol, Journal of Molecular Catalysis A: Chemical, 350 (2011) 9-15.
[14] T. Ji, L. Chen, L. Mu, R. Yuan, M. Knoblauch, F.S. Bao, J. Zhu, In-situ reduction of Ag nanoparticles on oxygenated mesoporous carbon fabric: Exceptional catalyst for nitroaromatics reduction, Applied Catalysis B: Environmental, 182 (2016) 306-315.
[15] Z. Jin, M. Xiao, Z. Bao, P. Wang, J. Wang, A General Approach to Mesoporous Metal Oxide Microspheres Loaded with Noble Metal Nanoparticles, Angewandte Chemie International Edition, 51 (2012) 6406-6410.
[16] E. Kan, L. Kuai, W. Wang, B. Geng, Delivery of Highly Active Noble-Metal Nanoparticles into Microspherical Supports by an Aerosol-Spray Method, Chemistry – A European Journal, 21 (2015) 13291-13296.
[17] S.M. Ansar, C.L. Kitchens, Impact of Gold Nanoparticle Stabilizing Ligands on the Colloidal Catalytic Reduction of 4-Nitrophenol, ACS Catalysis, 6 (2016) 5553-5560.
[18] V. Kalarivalappil, C.M. Divya, W. Wunderlich, S.C. Pillai, S.J. Hinder, M. Nageri, V. Kumar, B.K. Vijayan, Pd Loaded TiO2 Nanotubes for the Effective Catalytic Reduction of p-Nitrophenol, Catalysis Letters, 146 (2016) 474-482.
[19] M.M. Mohamed, M.S. Al-Sharif, Visible light assisted reduction of 4-nitrophenol to 4-aminophenol on Ag/TiO2 photocatalysts synthesized by hybrid templates, Applied Catalysis B: Environmental, 142 (2013) 432-441.
[20] S. Konar, H. Kalita, N. Puvvada, S. Tantubay, M.K. Mahto, S. Biswas, A. Pathak, Shape-dependent catalytic activity of CuO nanostructures, Journal of Catalysis, 336 (2016) 11-22.
[21] V. Thavasi, G. Singh, S. Ramakrishna, Electrospun nanofibers in energy and environmental applications, Energy & Environmental Science, 1 (2008) 205-221.
[22] R. Sridhar, S. Sundarrajan, J.R. Venugopal, R. Ravichandran, S. Ramakrishna, Electrospun inorganic and polymer composite nanofibers for biomedical applications, Journal of Biomaterials Science, Polymer Edition, 24 (2013) 365-385.
[23] W. Yiguang, J. Weijie, A. Qi, L. Yuanfeng, C. Jinchun, L. Guangtao, Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: an excellent system for antibacterial applications, Nanotechnology, 20 (2009) 245101.
[24] F. Fiévet, R. Brayner, Nanomaterials: a danger or a promise? A chemical and biological perspective, Springer-Verlag, London, 2013.
[25] S.L. Tao, T.A. Desai, Aligned Arrays of Biodegradable Poly(ε-caprolactone) Nanowires and Nanofibers by Template Synthesis, Nano Letters, 7 (2007) 1463-1468.
[26] P.T. Guner, A. Miko, F.F. Schweinberger, A.L. Demirel, Self-assembled poly(2-ethyl-2-oxazoline) fibers in aqueous solutions, Polymer Chemistry, 3 (2012) 322-324.
[27] C.J. Ellison, A. Phatak, D.W. Giles, C.W. Macosko, F.S. Bates, Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup, Polymer, 48 (2007) 3306-3316.
[28] E.S. Medeiros, G.M. Glenn, A.P. Klamczynski, W.J. Orts, L.H.C. Mattoso, Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions, Journal of Applied Polymer Science, 113 (2009) 2322-2330.
[29] W. Huang, M.-J. Wang, C.-L. Liu, J. You, S.-C. Chen, Y.-Z. Wang, Y. Liu, Phase separation in electrospun nanofibers controlled by crystallization induced self-assembly, Journal of Materials Chemistry A, 2 (2014) 8416-8424.
[30] D. Li, J.T. McCann, Y. Xia, M. Marquez, Electrospinning: A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes, Journal of the American Ceramic Society, 89 (2006) 1861-1869.
[31] Z. Li, C. Wang, One-dimensional nanostructures: electrospinning technique and unique nanofibers, Springer2013.
[32] K. Polat, M.L. Aksu, A.T. Pekel, Electroreduction of nitrobenzene to p-aminophenol using voltammetric and semipilot scale preparative electrolysis techniques, Journal of Applied Electrochemistry, 32 (2002) 217-223.
[33] A.H. Abbar, A.H. Sulaymon, M.G. Jalhoom, Scale-up of a fixed bed electrochemical reactor consisting of parallel screen electrode used for p-aminophenol production, Electrochimica Acta, 53 (2007) 1671-1679.
[34] K.B. Narayanan, N. Sakthivel, Heterogeneous catalytic reduction of anthropogenic pollutant, 4-nitrophenol by silver-bionanocomposite using Cylindrocladium floridanum, Bioresource Technology, 102 (2011) 10737-10740.
[35] E. Pocurull, R.M. Marcé, F. Borrull, Determination of phenolic compounds in natural waters by liquid chromatography with ultraviolet and electrochemical detection after on-line trace enrichment, Journal of Chromatography A, 738 (1996) 1-9.
[36] C.V. Rode, M.J. Vaidya, R. Jaganathan, R.V. Chaudhari, Hydrogenation of nitrobenzene to p-aminophenol in a four-phase reactor: reaction kinetics and mass transfer effects, Chemical Engineering Science, 56 (2001) 1299-1304.
[37] Y. Du, H. Chen, R. Chen, N. Xu, Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts, Applied Catalysis A: General, 277 (2004) 259-264.
[38] C.-H. Liu, B.-H. Chen, C.-L. Hsueh, J.-R. Ku, M.-S. Jeng, F. Tsau, Hydrogen generation from hydrolysis of sodium borohydride using Ni–Ru nanocomposite as catalysts, International Journal of Hydrogen Energy, 34 (2009) 2153-2163.
[39] P. Liu, M. Zhao, Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP), Applied Surface Science, 255 (2009) 3989-3993.
[40] Y. Wu, T. Zhang, Z. Zheng, X. Ding, Y. Peng, A facile approach to Fe3O4@Au nanoparticles with magnetic recyclable catalytic properties, Materials Research Bulletin, 45 (2010) 513-517.
[41] D. Li, Y. Xia, Fabrication of titania nanofibers by electrospinning, Nano Letter, 3 (2003) 555-560.
[42] G.L. Chiarello, A. Di Paola, L. Palmisano, E. Selli, Effect of titanium dioxide crystalline structure on the photocatalytic production of hydrogen, Photochemical & Photobiological Sciences, 10 (2011) 355-360.
[43] A. Di Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, L. Palmisano, Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317 (2008) 366-376.
[44] T.A. Kandiel, L. Robben, A. Alkaim, D. Bahnemann, Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities, Photochemical & Photobiological Sciences, 12 (2013) 602-609.
[45] A. Di Paola, M. Bellardita, L. Palmisano, Brookite, the Least Known TiO2 Photocatalyst, Catalysts, 3 (2013).
[46] J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Physical Chemistry Chemical Physics, 16 (2014) 20382-20386.
[47] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO(2) films, Scientific Reports, 4 (2014) 4043.
[48] M. Zhang, C. Shao, Z. Guo, Z. Zhang, J. Mu, T. Cao, Y. Liu, Hierarchical Nanostructures of Copper(II) Phthalocyanine on Electrospun TiO2 Nanofibers: Controllable Solvothermal-Fabrication and Enhanced Visible Photocatalytic Properties, ACS Applied Materials & Interfaces, 3 (2011) 369-377.
[49] B. Li, Y. Hao, B. Zhang, X. Shao, L. Hu, A multifunctional noble-metal-free catalyst of CuO/TiO2 hybrid nanofibers, Applied Catalysis A: General, 531 (2017) 1-12.
[50] Y. Alivov, V. Singh, Y. Ding, L.J. Cerkovnik, P. Nagpal, Doping of wide-bandgap titanium-dioxide nanotubes: optical, electronic and magnetic properties, Nanoscale, 6 (2014) 10839-10849.
[51] R. Katwal, H. Kaur, G. Sharma, M. Naushad, D. Pathania, Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity, Journal of Industrial and Engineering Chemistry, 31 (2015) 173-184.
[52] O. Zuas, H. Budiman, Synthesis of Nanostructured Copper-doped Titania and Its Properties, Nano-Micro Letters, 5 (2013) 26-33.
[53] Y. Wang, W. Duan, B. Liu, X. Chen, F. Yang, J. Guo, The effects of doping copper and mesoporous structure on photocatalytic properties of TiO 2, Journal of Nanomaterials, 2014 (2014) 63.
[54] A. Yousef, N.A.M. Barakat, T. Amna, S.S. Al-Deyab, M.S. Hassan, A. Abdel-hay, H.Y. Kim, Inactivation of pathogenic Klebsiella pneumoniae by CuO/TiO 2 nanofibers: a multifunctional nanomaterial via one-step electrospinning, Ceramics International, 38 (2012) 4525-4532.
[55] Y. Xu, Y. He, J. Jia, D. Zhong, Y. Wang, Cu−TiO2/Ti Dual Rotating Disk Photocatalytic (PC) Reactor: Dual Electrode Degradation Facilitated by Spontaneous Electron Transfer, Environmental Science & Technology, 43 (2009) 6289-6294.
[56] I. Sullivan, B. Zoellner, P.A. Maggard, Copper (I)-Based p-Type Oxides for Photoelectrochemical and Photovoltaic Solar Energy Conversion, Chem. Mater, 28 (2016) 5999-6016.
[57] P. Zhang, T. Wang, X. Chang, J. Gong, Effective charge carrier utilization in photocatalytic conversions, Accounts of chemical research, 49 (2016) 911-921.
[58] A.K. Sasmal, S. Dutta, T. Pal, A ternary Cu2O–Cu–CuO nanocomposite: a catalyst with intriguing activity, Dalton Transactions, 45 (2016) 3139-3150.
[59] J. Ghijsen, L.H.v. Tjeng, J. Van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Electronic structure of Cu 2 O and CuO, Physical Review B, 38 (1988) 11322.
[60] D. Tahir, S. Tougaard, Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy, Journal of Physics: Condensed Matter, 24 (2012) 175002.
[61] C. Karunakaran, G. Abiramasundari, P. Gomathisankar, G. Manikandan, V. Anandi, Cu-doped TiO 2 nanoparticles for photocatalytic disinfection of bacteria under visible light, Journal of colloid and interface science, 352 (2010) 68-74.
[62] S.S. Lee, H. Bai, Z. Liu, D.D. Sun, Optimization and an insightful properties-Activity study of electrospun TiO2/CuO composite nanofibers for efficient photocatalytic H2 generation, Applied Catalysis B: Environmental, 140-141 (2013) 68-81.
[63] H.-J. Choi, M. Kang, Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2, International Journal of Hydrogen Energy, 32 (2007) 3841-3848.
[64] S. Xiao, P. Liu, W. Zhu, G. Li, D. Zhang, H. Li, Copper nanowires: a substitute for noble metals to enhance photocatalytic H2 generation, Nano letters, 15 (2015) 4853-4858.
[65] Z. Wang, Y. Liu, D.J. Martin, W. Wang, J. Tang, W. Huang, CuO x–TiO 2 junction: what is the active component for photocatalytic H 2 production?, Physical Chemistry Chemical Physics, 15 (2013) 14956-14960.
[66] J.P. Yasomanee, J. Bandara, Multi-electron storage of photoenergy using Cu 2 O–TiO 2 thin film photocatalyst, Solar Energy Materials and Solar Cells, 92 (2008) 348-352.
[67] K.M. Shrestha, C.M. Sorensen, K.J. Klabunde, Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region, The Journal of Physical Chemistry C, 114 (2010) 14368-14376.
[68] J.A. Rodriguez, J.Y. Kim, J.C. Hanson, M. Pérez, A.I. Frenkel, Reduction of CuO in H 2: in situ time-resolved XRD studies, Catalysis Letters, 85 (2003) 247-254.
[69] J.Y. Kim, J.A. Rodriguez, J.C. Hanson, A.I. Frenkel, P.L. Lee, Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides, Journal of the American Chemical Society, 125 (2003) 10684-10692.
[70] Q. Wang, W. Wang, B. Yan, W. Shi, F. Cui, C. Wang, Well-dispersed Pd-Cu bimetals in TiO 2 nanofiber matrix with enhanced activity and selectivity for nitrate catalytic reduction, Chemical Engineering Journal, 326 (2017) 182-191.
[71] M.-P. Zheng, Y.-P. Jin, G.-L. Jin, M.-Y. Gu, Characterization of TiO2-PVP nanocomposites prepared by the sol-gel method, Journal of Materials Science Letters, 19 (2000) 433-436.
[72] Y. Wu, G. Lu, S. Li, The Role of Cu(I) Species for Photocatalytic Hydrogen Generation Over CuOx/TiO2, Catalysis Letters, 133 (2009) 97-105.
[73] T. Ji, L.C.L. Mu, R.Y.M.K.F.S. Bao, J. Zhu, In-situ reduction of Ag nanoparticles on oxygenated mesoporous carbon fabric: Exceptional catalyst for nitroaromatics reduction, Applied Catalysis B: Environmental, 182 (2016) 306-315.
[74] Z. Jin, M. Xiao, Z. Bao, P. Wang, J. Wang, A General Approach to Mesoporous Metal Oxide Microspheres Loaded with Noble Metal Nanoparticles, Angewandte Chemie International Edition, 51 (2012) 6406-6410.
[75] E. Kan, L. Kuai, W. Wang, B. Geng, Delivery of Highly Active Noble-Metal Nanoparticles into Microspherical Supports by an Aerosol-Spray Method, Chemistry-A European Journal, 21 (2015) 13291-13296.
[76] S.M. Ansar, C.L. Kitchens, Impact of Gold Nanoparticle Stabilizing Ligands on the Colloidal Catalytic Reduction of 4-Nitrophenol, ACS Catalysis, 6 (2016) 5553-5560.
[77] Y.G. Wu, M. Wen, Q.S. Wu, H. Fang, Ni/graphene Nanostructure and Its Electron-Enhanced Catalytic Action for Hydrogenation Reaction of Nitrophenol, The Journal of Physical Chemistry C, 118 (2014) 6307-6313.
[78] S. Dutta, S. Sarkar, C. Ray, A. Roy, R. Sahoo, T. Pal, Mesoporous Gold and Palladium Nanoleaves from Liquid-Liquid Interface: Enhanced Catalytic Activity of the Palladium Analogue toward Hydrazine-Assisted Room-Temperature 4-Nitrophenol Reduction, ACS Applied Materials & Interfaces, 6 (2014) 9134-9143.
[79] S. Harish, J. Mathiyarasu, K.L.N. Phani, V. Yegnaraman, Synthesis of Conducting Polymer Supported Pd Nanoparticles in Aqueous Medium and Catalytic Activity Towards 4-Nitrophenol Reduction, Catalysis Letters, 128 (2009) 197-202.
[80] P. Herves, M. Perez-Lorenzo, L.M. Liz-Marzan, J. Dzubiella, Y. Lu, M. Ballauff, Catalysis by metallic nanoparticles in aqueous solution: model reactions, Chemical Society Reviews, 41 (2012) 5569-5868.
[81] P. Deka, R.C. Deka, P. Bharali, In situ generated copper nanoparticle catalyzed reduction of 4-nitrophenol, New Journal of Chemistry, 38 (2014) 1789-1793.
[82] R. Kaur, C. Giordano, M. Gradzielski, S.K. Mehta, Synthesis of Highly Stable, Water-Dispersible Copper Nanoparticle s as Catalysts for Nitr obenzene Reduction, Chemistry An Asian Journal, 9 (2014) 189-198.
[83] A. Mondal, A. Mondal, B. Adhikary, D.K. Mukherjee, Cobalt nanoparticles as reusable catalysts for reduction of 4-nitrophenol under mild conditions, Bulletin of Materials Science, 40 (2017) 321-328.
[84] M. Nemanashi, R. Meijboom, Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol, Journal of Colloid and Interface Science, 389 (2013) 260-267.
[85] S. Wunder, F. Polzer, Y. Lu, Y. Mei, M. Ballauff, Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes, Journal of Physical Chemistry C, 114 (2010) 8814-8820.
[86] A.D. McNaught, A.D. McNaught, Compendium of chemical terminology, Blackwell Science Oxford1997.
[87] W. Che, Y. Ni, Y. Zhang, Y. Ma, Morphology-controllable synthesis of CuO nanostructures and their catalytic activity for the reduction of 4-nitrophenol, Journal of Physics and Chemistry of Solids, 77 (2015) 1-7.
[88] M. Jung, J. Scott, Y.H. Ng, Y. Jiang, R. Amal, CuOx dispersion and reducibility on TiO2 and its impact on photocatalytic hydrogen evolution, International Journal of Hydrogen Energy, 39 (2014) 12499-12506.
[89] V. Kalarivalappil, C.M. Divya, W. Wunderlich, S.C. Pillai, S.J. Hinder, M. Nageri, V. Kumar, B.K. Vijayan, Pd Loaded TiO2 Nanotubes for the Effective Catalytic Reduction of p-Nitrophenol, Catalysis Letters, 146 (2015) 474-482.
[90] C.Y. Tsai, H.C. Hsi, T.H. Kuo, Y.M. Chang, J.H. Liou, Preparation of Cu-Doped TiO2 Photocatalyst with Thermal Plasma Torch for Low-Concentration Mercury Removal, Aerosol and Air Quality Research, 13 (2013) 639-648.
[91] K. Tanaka, M.F.V. Capule, T. Hisanaga, Effect of crystallinity of TiO2 on its photocatalytic action, Chemical Physics Letters, 187 (1991) 73-76.
[92] M.M. Mohamed, B.H.M. Asghar, H.A. Muathen, Facile synthesis of mesoporous bicrystallized TiO2(B)/anatase (rutile) phases as active photocatalysts for nitrate reduction, Catalysis Communications, 28 (2012) 58-63.
[93] J. Liu, Q. Wu, F. Huang, H. Zhang, S. Xu, W. Huang, Z. Li, Facile preparation of a variety of bimetallic dendrites with high catalytic activity by two simultaneous replacement reactions, RSC Advances, 3 (2013) 14312-14321.
[94] G. Mele, E. Garcìa-Lòpez, L. Palmisano, G. Dyrda, R. Słota, Photocatalytic Degradation of 4-Nitrophenol in Aqueous Suspension by Using Polycrystalline TiO2 Impregnated with Lanthanide Double-Decker Phthalocyanine Complexes, The Journal of Physical Chemistry C, 111 (2007) 6581-6588.
[95] A. Nezamzadeh-Ejhieh, S. Khorsandi, Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite, Journal of Industrial and Engineering Chemistry, 20 (2014) 937-946.
[96] A. Bhattacharjee, M. Ahmaruzzaman, CuO nanostructures: facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase, RSC Advances, 6 (2016) 41348-41363.
[97] Y. Chi, Q. Yuan, Y. Li, J. Tu, L. Zhao, N. Li, X. Li, Synthesis of Fe3O4@SiO2–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol, Journal of Colloid and Interface Science, 383 (2012) 96-102.
[98] J. Bandara, C.P.K. Udawatta, C.S.K. Rajapakse, Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O, Photochemical & Photobiological Sciences, 4 (2005) 857-861.
[99] A. Mondal, A. Mondal, B. Adhikary, D.K. Mukherjee, Cobalt nanoparticles as reusable catalysts for reduction of 4-nitrophenol under mild conditions, Bulletin of Materials Science, 40 (2017) 321-328.
[100] V. Brezová, A. Blažková, I. Šurina, B. Havlínová, Solvent effect on the photocatalytic reduction of 4-nitrophenol in titanium dioxide suspensions, Journal of Photochemistry and Photobiology A: Chemistry, 107 (1997) 233-237.
[101] Y. Kojima, K.-i. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai, H. Hayashi, Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide, International Journal of Hydrogen Energy, 27 (2002) 1029-1034.
[102] R. Fernandes, N. Patel, A. Miotello, M. Filippi, Studies on catalytic behavior of Co–Ni–B in hydrogen production by hydrolysis of NaBH4, Journal of Molecular Catalysis A: Chemical, 298 (2009) 1-6.

無法下載圖示 全文公開日期 2022/12/12 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE