簡易檢索 / 詳目顯示

研究生: 陳思源
Szu-Yuan Chen
論文名稱: 合成新型含苯並噁唑側基之聚苯咪唑於中溫型燃料電池質子傳導膜之性質研究
Synthesis and Characterization of New Polybenzimidazoles Containing Pendent Benzoxazole Groups for Proton Exchange Membrane Fuel Cell at Intermediate Temperature
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 蔡大翔
Dah-Shyang Tsai
陳志堅
Jyh-Chien Chen
劉貴生
Guey-Sheng Liou
蕭勝輝
Sheng-Huei Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 112
中文關鍵詞: 中溫型燃料電池聚苯咪唑苯並噁唑
外文關鍵詞: PBI, fuel cell, Benzoxazole
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功合成具有雜環側鏈之 PBI 聚合物,其固有黏度範圍在 0.92~1.9 dL/g 之間,均可塗佈成具有韌性之薄膜,然而這些聚合物隨著含雜環側鏈比例的提升,聚合物的溶解度增加,且有好的熱安定性,於氮氣下 5 % 裂解溫度為 653~705 ℃、以及高的玻璃轉換溫度( Tg 大約在 300 ℃左右),它的抗張強度大於 94.5 MPa,但是當摻雜磷酸後,薄膜受到磷酸的膨潤,導致體積的增加,使機械強度會大幅下降,於是我們導入含甲基側基的單體,形成交聯 PBI 聚合物,由於交聯結構,限制吸附磷酸的量,雖然稍微減少磷酸摻雜量,但機械性質比起原先未交聯之 PBI 聚合物,其抗張強度增加了 1 倍。
    在質子傳導度方面,導電度隨溫度與磷酸摻雜程度增加而增加,其中 PBI-1-10 在 200 ℃無水的環境下,飽和磷酸摻雜量為 286 wt%,質子傳導度為 61.6 mS/cm 比 m-PBI (57.8 mS/cm) 的質子傳導度高,至於交聯之 PBI 薄膜 C5-PBI-1-10 在 200 ℃無水的環境下,飽和磷酸摻雜程度達 354 wt%,質子傳導度為 67.7 mS/cm也高於m-PBI (57.8 mS/cm) 的質子傳導度。
    因此這些具有雜環側鏈之 PBI 薄膜具有高磷酸摻雜量、高質子傳導度和好的熱安定性,經由交聯結構的形成,使得PBI薄膜在高的磷酸摻雜量下,仍保有良好的機械性質,與高的質子傳導度,未來是很有潛力成為中溫型燃料電池中質子交換膜材料。


    A series of new polybenzimidazoles (PBIs) with pendant heterocyclic ring have been synthesized. The resulting polymers showed good solubility in aprotic solvents. They had inherent viscosities in the range of 0.92~1.9 dLg-1, and they could form tough and flexible films. They exhibited high thermal stability with initial decomposition temperature ranging from 653 to 705 in nitrogen, and their glass transition temperature around 300℃. These films exhibited good mechanical properties with tensile stress exceeded 94.5 MPa. Phosphoric acid (PA) doped PBI was swollen result in the volume of PBI showed a larger volume swelling. The mechanical properties of phosphoric acid doped PBI significantly decreased. This is the first study that improved mechanical properties of proton exchange membranes using crosslinking in methyl pendent PBIs. Mechanical strength of cross-linked PBI is twice as strong as noncross-linked PBI.
    The proton conductivity of phosphoric acid doped PBI was dependent on doping PA level and temperatures. The proton conductivity of PBI-1-10 was approximately 61.6 mS/cm at 200 ℃, compared with 57.8 mS/cm of m-PBI membrane. The proton conductivity of C5-PBI-1-10 was approximately 67.7 mS/cm at 200 ℃.
    Thus, these polybenzimidazoles (PBIs) with pendant heterocyclic ring membranes could be the promising materials alternative to Nafion membrane for medium-temperature fuel cells applications because they had high phosphoric acid doped, good thermal stability, and higher proton conductivity.

    摘要.........................................................................I ABSTRACT....................................................................II 目錄.......................................................................III FIGURE 索引.................................................................VI TABLE 索引..................................................................IX 第一章 緒論.................................................................1 1.1前言......................................................................1 1.2 燃料電池的介紹...........................................................3 1.2.1燃料電池的發展..........................................................3 1.2.2燃料電池的特色..........................................................5 1.2.3 燃料電池的種類.........................................................7 1.2.4 燃料電池的原理及應用..................................................10 1.3 直接甲醇燃料電池介紹(DMFC)..............................................12 1.3.1 直接甲醇燃料電池的原理及構造..........................................12 1.3.2 直接甲醇燃料電池的核心................................................13 1.4 中溫型燃料電池簡介......................................................15 1.4.1中溫型 (150~250 ℃) 燃料電池的優點.....................................15 1.4.2 聚苯咪唑薄膜摻雜磷酸的質子傳導機制....................................16 1.5 交聯劑介紹..............................................................18 1.6 文獻回顧................................................................22 1.7 研究動機................................................................35 1.8 研究內容................................................................37 第二章 實驗................................................................38 2.1 實驗藥品................................................................38 2.2 聚苯咪唑 (POLYBENZIMIDAZOLE) 共聚物實驗程序.............................41 2.2.1 單體合成..............................................................42 2.2.2 合成聚苯咪唑共聚物 (PBIs).............................................44 2.2.3 合成交聯聚苯咪唑共聚物 (Crosslinked-PBIs).............................46 2.3 聚合物之物性與化性分析..................................................48 第三章 結果與討論..........................................................54 3.1單體與 PBIS 的合成.......................................................54 3.2交聯 PBIS 的合成與證明...................................................61 3.2.1 DSC 量測..............................................................61 3.2.2 FT-IR 分析............................................................62 3.3固有黏度測試.............................................................64 3.4溶解度測試...............................................................65 3.5 熱性質測試..............................................................68 3.6 PBI 共聚合物組成對磷酸摻雜程度的效應....................................73 3.7 吸濕率與膨潤度的測試....................................................79 3.8 質子傳導度分析..........................................................81 3.8.1 溫度對質子傳導度的效應................................................81 3.8.2 PBI 的化學構造對質子傳導度的效應......................................87 3.9 機械性質量測............................................................89 3.9.1 未摻雜磷酸薄膜機械性質量測............................................89 3.9.2 摻雜磷酸薄膜機械性質量測..............................................91 3.10 氧化安定性測試.........................................................95 第四章 結論................................................................96 第五章 參考文獻............................................................98

    1. J. Larminie, D. Andrew, “Fuel Cell Systems Explained (2nd Edition)”, John Wiley & Sons Inc, 2003.
    2. 溫武義,燃料電池技術,全華科技圖書有限公司(2004)。
    3. 鄭耀宗等著,現場型磷酸燃料應用於大用戶之可行性研究(1995)。
    4. J. H. Hirschenhofer, D. B. Stauffer, R. R. Engleman, M. G. Klett, Fuel Cell Handbook,fifth edition, 2000.
    5. 陳維新,燃料電池,高立圖書有限公司(2009)。
    6. 台灣燃料電池資訊網, http://www.tfci.org.tw。
    7. 陳振源,「未來的綠色能源-燃料電池」《科學發展》,391 期。62∼65 頁(2005)。
    8. S. J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Int. J. Hydrogen Energy, 2010, 35, 9349.
    9. O. Stonehart, J. Appl. Electrochem., 1992, 22, 995.
    10. S. Surampudi, S. R. Narayanan, E. Vamos, J. Power Sources, 1994, 47, 377.
    11. M. P. Hogarth, G. A. Hards, Platinum Maters Rev., 1996, 40, 150.
    12. 財團法人國家實驗研究院科技政策研究與資訊中心,2005年7月。
    13. C. H. Parka, C. H. Leeb, M. D. Guivera, Y. M. Leea, Prog. Polym. Sci., 2011, 36, 1443.
    14. B. Smitha, S. Sridhar, A. A. Khan, J. Membr. Sci., 2005, 259, 10.
    15. H. J. Kim, T. W. Lim, Y. S. Park, K. S. Shin, J. C. Lee, Macromol. Chem. Phys., 2007, 208, 2293.
    16.T. H. Kim, T. W. Lim, J. C. Lee, J. Power Source, 2007, 172, 172.
    17. Q. F. Li, R. H. He, J. O. Jensen, N.J. Bjerrum, J. Electrochem. soc., 2003, 150, 1599.
    18.Y. L. Ma, J. S. Wainright, M. H. Litt, R. F. Savinell, J. Electrochem. Soc., 2004, 151, 8.
    19. A. Chandan, M. Hattenberger, A. E. kharouf, S. Du, A. Dhir, V Self,
    B. G. Pollet, A. Ingram, W. Bujalski, J. Power Sources, 2013, 231, 264.
    20. J. A. Asensio, E. M. Sanchezab, P. G.Romero, Chem. Soc. Rev., 2010, 39, 3210.
    21. H. Luo, H. Pu, Z.Chang, D. Wan, H. Pan, J. Mater. Chem., 2012, 22, 20696.
    22. M. Han, G. Zhang, Z. Liu, S. Wang, M. Li, J. Zhu, H. Li, Y. Zhang, C. M. Lewb, H. Na, J. Mater. Chem., 2011 21, 2187.
    23. H. Bai, W.S. W. Ho, J. Tai. Inst. Chem. Eng., 2009, 40, 260.
    24. J. Su, H. Pu, Z. Chang, D. Wan, Polymer, 2012, 53, 358.
    25. G. Wang, G. Xiao, D. Yan, Int. J. Hydrogen Energy, 2012, 37, 5170.
    26. T. Na, K. Shao, J. Zhu, Z. Liu, H. Sun, C. M. Lewb, Z. Zhang,
    G. Zhang , Polymer, 2012, 53, 4413.
    27. L. Zhanga, G. Zhanga, C. Zhaoa, H. Jianga, J. Wanga, D. Xub, Y. Zhanga, K. Shaoa, Z. Liua, W. Maa, H. Li, M. Li, S. Wanga, H. Naa, J. Power Sources, 2012, 201, 142.
    28. Y. Zhanga, Y. Wanb, G. Zhanga, K. Shaoa, . Zhaoa, H. Li, H. Na, J. Membr. Sci., 2010, 348, 353.
    29. A. K. Mohanty, E. A. Mistri, S. Banerjee, H. Komber, B. Voit, Ind. Eng. Chem. Res., 2013, 52, 2772.
    30. X. Zhang, Z. Hu, S. Zhang, S. Chen, S. Chen, J. Liu,
    L. Wang, J. Appl, Polym. Sci., 2011, 121, 1707.
    31. K. S. Lee, M. H. Jeong, J. P. Lee, J. S. Lee, Macromol., 2009, 42, 584.
    32. Y. Yin, S. Hayashi, O. Yamada, H. Kita, K. I.Okamoto, Macromol. Rapid Commun., 2005, 26, 696.
    33. 邱茂興,合成新型含雜環結構之磺酸化聚醯亞胺於質子交換膜材料之性質研究,台灣科技大學化工系(2009)。
    34. F. Wang, M. Hickner, Y.S. Kim, T.A. Zawodzinski, J.E. McGrath, J. Membr. Sci., 2002, 197, 231.
    35. H. Pu, Q. Liu, G. Liu, J. Membr. Sci,, 2004, 241,169.
    36. L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E. W. Choe, Fuel cells, 2005, 5, 287.
    37. H. G. Chae, S. Kumar, J. Appl. Polym. Sci., 2006, 100, 791.
    38. J. A. Asensio, S. Borro's, P. Go'mez-Romero, J. Polym. Sci. Polym Chem, 2002, 40, 3703.
    39. Q. Li, R. He, J. O. Jensen, N. J. Bjerrum, Fuel Cell, 2004, 4, 147.
    40. R. He, Q. Li, A. Bach, J. O. Jensen, N. J. Bjerrum, J. Membr. Sci., 2006, 277, 38.

    無法下載圖示 全文公開日期 2018/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE