簡易檢索 / 詳目顯示

研究生: 蘇韋丞
Wei-cheng Su
論文名稱: 新型態有機施體型材料雙萘苯胺苯丁烯二腈於有機光電子元件之研究
Study of organic optoelectronic device with p-type organic material bis(4-(N-(1-naphthyl)phenylamino)phenyl)fumaronitrile
指導教授: 李志堅
Chih-chien Lee
口試委員: 范慶麟
Ching-lin Fan
徐世祥
Shih-hsiang Hsu
劉舜維
Shun-wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 91
中文關鍵詞: 高開路電壓電激發發光有機太陽能
外文關鍵詞: high open-circuit voltage, electroluminescence, organic photovoltaic
相關次數: 點閱:241下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用高游離能材料雙萘苯胺苯丁烯二腈(bis(4-(N- (1-naphthyl)phenylamino)phenyl)fumaronitrile, NPAFN)作為施體層來製作高開路電壓之有機太陽能元件,NPAFN的材料特性藉由紫外到可見光光譜儀、光電子光譜儀、原子力顯微鏡及空間電荷限制模型來檢測,結構為ITO/NPAFN/C60/4-Hydroxy-8-methyl-1,5-naphthyridine aluminium chelate (AlmND3)/Al之有機太陽能元件,經由光場及電性的調變,功率轉換效率達2.02%,元件接近1 V之高開路電壓,主要是歸因於NPAFN的最高佔據分子軌域(5.7 eV)及C60的最低未佔據分子軌域(4.2 eV)所產生的高能階差,光電轉換效率的結果顯示NPAFN所貢獻的光電流和C60所貢獻的光電流是等量的,因此可以說明NPAFN不止提供了高開路電壓,同時也讓元件擁有不錯的光電流。
    而最佳化的元件,同時也利用變鍍率來更進一步研究NPAFN的鍍率對有機太陽能光伏效應之影響,由表面形貌可看出,不同鍍率下造成分子排列之間影響甚大。而透過等效電路模型的近似擬合及空間電荷限制電流的分析,可以發現在高鍍率下,因為NPAFN分子之間的作用力變弱,導致NPAFN的載子遷移率越低。同時,開路電壓會因分子作用力變低而提升,而元件的效率,在NPAFN鍍率0.5 nm/s下,可以達到2.3%。
    有機太陽能元件同時也作電激發的檢測,在100 mA/cm2驅動電流下,可得元件的電流效率為0.11 cd/A,電激發頻譜顯示NPAFN為放光的來源,最後,因為含NPAFN/C60的元件在可見光的低反射率,因此該元件相較於傳統有機發光元件,有較高的對比度。


    This thesis has demonstrated high open-circuit voltage (VOC) organic photovoltaic (OPV) device by introducing a high ionization energy material bis(4-(N-(1-naphthyl)phenylamino)phenyl)fumaronitrile (NPA- FN) as the donor layer. Characterization of NPAFN was thoroughly studied by the ultraviolet-visible (UV-vis) spectroscopy, photoelectron spectroscopy, atomic force microscopy (AFM), and the model of space-charge limited current (SCLC). Devices comprised ITO/NPAFN/ C60 / 4-Hydroxy-8-methyl-1,5-naphthyridine aluminium chelate (AlmND3)/Al were optimized to the power conversion efficiency (PCE) of 2.02% under AM 1.5G simulated solar illumination (1-sun) through the optical manipulation and electrical property tuning. The significant improvement in VOC of ~1 V was ascribed to the high energy difference between the highest occupied molecular orbital (HOMO) of NPAFN (5.7 eV) and the lowest unoccupied molecular orbital (LUMO) of C60 (4.2 eV). Incident photon-to-electron conversion efficient (IPCE) results reveal that the contribution of carriers from NPAFN competed with that from C60, which implied not only high VOC but also effective extraction of photocurrent for the function of NPAFN.
    Device with such optimum structure was further analyzed in terms of the deposition of NPAFN. The performances under illumination and in the dark were studied. Morphological changes in different deposition rates indicated that the intermolecular interactions were considerably influenced during film deposition. The higher deposition rate of NPAFN resulted in the lower carrier mobility due to the weak molecular interaction, which was confirmed by the equivalent-circuit fitting and SCLC model. At the same time, the lower molecular interaction leaded to the higher VOC. Finally, the PCE was further improved to 2.3% at the NPAFN deposition rate of 0.5 nm/s.
    The OPV device was also investigated into the electroluminescent (EL) properties. With the same OPV structure, the device exhibited current efficiency of 0.11 cd/A at 100 mA/cm2. The EL spectrum implied that the electron might recombine with the hole in the NPAFN layer. The practical application of light-emitting photovoltaic device was studied as the function of the device reflectance. Compared to the conventional organic light-emitting device (OLED), the device based on NPAFN/C60 possessed the higher contrast due to the relatively low reflectance within the visible spectrum.

    Chapter 1 介紹 1 1.1 前言 1 1.2 有機太陽能電池工作原理 1 1.3 異質接面有機太陽能電池的發展 6 1.3.1 異質結構 6 1.3.2 雙異質接面結構 7 1.3.3 激子阻擋層 7 1.3.4 受體–碳60 (C60) 8 1.3.5 施體 8 1.4 實驗動機 9 Chapter 2 實驗 11 2.1 儀器介紹 11 2.1.1 超音波震盪機 11 2.1.2 旋轉塗佈機 11 2.1.3 曝光機 12 2.1.4 氧電漿清洗機 13 2.1.5 熱蒸鍍機 14 2.1.6 手套箱 15 2.1.7 太陽光模擬器 16 2.1.8 電源電錶 17 2.1.9 單光儀 17 2.1.10 鎖相放大器 18 2.1.11 紫外到可見光光譜儀 19 2.1.12 螢光光譜儀 20 2.1.13 光電子光譜儀 20 2.1.14 探針式膜厚儀 21 2.1.15 原子力顯微鏡 22 2.2 實驗流程 22 2.2.1 基板製作–石刻術 23 2.2.2 薄膜沉積–熱蒸鍍系統 24 2.2.3 元件封裝 25 2.2.4 元件效率量測 26 2.2.5 材料特性量測 27 Chapter 3 結果與討論 29 3.1 NPAFN之材料特性 29 3.1.1 吸收頻譜 29 3.1.2 光激發放光頻譜 30 3.1.3 功函數與能階分佈 31 3.1.4 載子遷移率 32 3.1.5 表面特性 34 3.2 以NPAFN製作之有機太陽能元件的光學及電性 35 3.2.1 載子平衡與電性 36 3.2.2 光學調變 40 3.2.3 元件厚度最佳化 42 3.3 NPAFN之鍍率對有機太陽能元件的影響 46 3.3.1 元件效率 47 3.3.2 元件暗電流 49 3.3.3 表面形貌 51 3.3.4 分子作用力 52 3.3.5 空間電荷限制電流 53 3.4 以NPAFN製作之元件的電激發放光特性 54 3.4.1 電流對電壓特性 55 3.4.2 電激發放光特性 56 3.4.3 有機發光太陽能元件之應用 58 Chapter 4 結論 62

    [1] P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys., Vol. 93, pp. 3693-3723 (2003).
    [2] S. Yoo, B. Domercq, and B. Kippelen, “Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60,” J. Appl. Phys., Vol. 97, pp. 103706 (2005).
    [3] A. K. Ghosh and T. Feng, “Rectification, space-charge-limited current, photovoltaic and photoconductive properties of Al/tetracene/Au sandwich cell,” J. Appl. Phys., Vol. 44, pp. 2781-2788 (1973).
    [4] A. K. Ghosh, D. L. Morel, T. Feng, R. F. Shaw, and C. A. R. Jr., “Photovoltaic and rectification properties of Al/Mg phthalocyanine/Ag Schottky-barrier cells,” J. Appl. Phys., Vol. 45, pp. 230-237 (1974).
    [5] C. W. Tang and A. C. Albrecht, “Transient photovoltaic effects in metal-chlorophyll-a-metal sandwich cells,” J. Chem. Phys., Vol. 63, pp. 953-961 (1975).
    [6] C. W. Tang and A. C. Albrecht, “Chlorophyll-a photovoltaic cells,” Nature, Vol. 254, pp. 507-509 (1975).
    [7] V. Y. Merritt and H. J. Hovel, “Organic solar cells of hydroxy squarylium,” Appl. Phys. Lett., Vol. 29, pp. 414-415 (1976).
    [8] F. J. Kampas and M. Gouterman, “Photovoltaic properties of octaethylporphine and tetraphenylporphine,” J. Phys. Chem., Vol. 81, pp. 690-695 (1977).
    [9] D. L. Morel, A. K. Ghosh, T. Feng, E. L. Stogryn, P. E. Purwin, R. F. Shaw, and C. Fishman, “High-efficiency organic solar cells,” Appl. Phys. Lett., Vol. 32, pp. 495-497 (1978).
    [10] F.-R. Fan and L. R. Faulkner, “Photovoltaic effects of metalfree and zinc phthalocyanines. I. Dark electrical properties of rectifying cells,” J. Chem. Phys., Vol. 69, pp. 3334-3340 (1978).
    [11] F.-R. Fan and L. R. Faulkner, “Photovoltaic effects of metalfree and zinc phthalocyanines. II. Properties of illuminated thin-film cells,” J. Chem. Phys., Vol. 69, pp. 3341-3349 (1978).
    [12] A. K. Ghosh and T. Feng, “Merocyanine organic solar cells,” J. Appl. Phys., Vol. 49, pp. 5982-5989 (1978).
    [13] G. A. Chamberlain and P. J. Cooney, “Photoelectric properties of aluminium/copper phthalocyanine/gold photovoltaic cells,” Chem. Phys. Lett., Vol. 66, pp. 88-94 (1979).
    [14] G. A. Chamberlain and R. E. Malpas, “Solid-state and liquid-junction photovoltaic properties of some polar dyes,” Faraday Discuss. Chem. Soc., Vol. 70, pp. 299-310 (1980).
    [15] G. A. Chamberlain, P. J. Cooney, and S. Dennison, “Photovoltaic properties of merocyanine solid-state photocells,” Nature, Vol. 289, pp. 45-47 (1981).
    [16] G. A. Chamberlain, “Depletion layer studies and carrier photogeneration in doped merocyanine photovoltaic cells,” J. Appl. Phys., Vol. 53, pp. 6262-6269 (1982).
    [17] C. W. Tang, “Two-layer photovoltaic cell,” Appl. Phys. Lett., Vol. 48, pp. 183-185 (1986).
    [18] B. A. Gregg and M. C. Hanna, “Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation,” J. Appl. Phys., Vol. 93, pp. 3605-3614 (2003).
    [19] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science, Vol. 258, pp. 1474-1476 (1992).
    [20] H. Kurczewska and H. Bassler, “Energy transfer across an anthracene-gold interface,” J. Luminesc., Vol. 15, pp. 261-266 (1977).
    [21] V.-E. Choong, Y. Park, N. Shivaparan, C. W. Tang, and Y. Gao, “Deposition-induced photoluminescence quenching of tris-(8-hydroxyquinoline) aluminum,” Appl. Phys. Lett., Vol. 71, pp. 1005-1007 (1997).
    [22] V.-E. Choong, Y. Park, Y. Gao, M. G. Mason, and C. W. Tang, “Photoluminescence quenching of Alq3 by metal deposition: A surface analytical investigation,” J. Vac. Sci. Technol., Vol. 16, pp. 1838-1841 (1998).
    [23] A. L. Burin and M. A. Ratner, “Exciton migration and cathode quenching in organic light emitting diodes,” J. Phys. Chem. A, Vol. 104, pp. 4704-4710 (2000).
    [24] M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blassing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E. P. Woo, “Cathode-induced luminescence quenching in polyfluorenes,” J. Appl. Phys., Vol. 87, pp. 4467-4475 (2000).
    [25] V. Choong, Y. Park, Y. Gao, T. Wehrmeister, K. Mullen, B. R. Hsieh, and C. W. Tang, “Dramatic photoluminescence quenching of phenylene vinylene oligomer thin films upon submonolayer Ca deposition,” Appl. Phys. Lett., Vol. 69, pp. 1492-1494 (1996).
    [26] V.-E. Choong, Y. Park, Y. Gao, B. R. Hsieh, and C. W. Tang, “Metal induced photoluminescence quenching of a phenylene vinylene oligomer and its recovery,” Macromol. Symp., Vol. 125, pp. 83-97 (1997).
    [27] K. Kuhnke, R. Becker, M. Epple, and K. Kern, “C60 exciton quenching near metal surfaces,” Phys. Rev. Lett., Vol. 79, pp. 3246-3249 (1997).
    [28] K. Petritsch and R. H. Friend, “Ultrathin organic photovoltaic devices,” Synth. Met., Vol. 102, pp. 976 (1999).
    [29] D. F. O'Brien, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Improved energy transfer in electrophosphorescent devices,” Appl. Phys. Lett., Vol. 74, pp. 442-444 (1999).
    [30] P. Peumans, V. Bulovic, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett., Vol. 76, pp. 2650-2652 (2000).
    [31] M. Vogel, S. Doka, C. Breyer, M. C. Lux-Steiner, and K. Fostiropoulos, “On the function of a bathocuproine buffer layer in organic photovoltaic cells,” Appl. Phys. Lett., Vol. 89, pp. 163501 (2006).
    [32] H. Gommans, B. Verreet, B. P. Rand, R. Muller, J. Poortmans, P. Heremans, and J. Genoe, “On the Role of Bathocuproine in Organic Photovoltaic Cells,” Adv. Funct. Mater., Vol. 18, pp. 3686-3691 (2008).
    [33] J. Huang, J. Yu, H. Lin, and Y. Jiang, “Detailed analysis of bathocuproine layer for organic solar cells based on copper phthalocyanine and C60,” J. Appl. Phys., Vol. 105, pp. 073105 (2009).
    [34] B. P. Rand, J. Li, J. Xue, R. J. Holmes, M. E. Thompson, and S. R. Forrest, “Organic Double-Heterostructure Photovoltaic Cells Employing Thick Tris(acetylacetonato)ruthenium(III) Exciton-Blocking Layers,” Adv. Mater., Vol. 17, pp. 2714-2718 (2005).
    [35] M. Y. Chan, S. L. Lai, K. M. Lau, C. S. Lee, and S. T. Lee, “Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices,” Appl. Phys. Lett., Vol. 89, pp. 163515 (2006).
    [36] M. Y. Chan, C. S. Lee, S. L. Lai, M. K. Fung, F. L. Wong, H. Y. Sun, K. M. Lau, and S. T. Lee, “Efficient organic photovoltaic devices using a combination of exciton blocking layer and anodic buffer layer,” J. Appl. Phys., Vol. 100, pp. 094506 (2006).
    [37] Z. Hong, Z. Huang, and X. Zeng, “Utilization of copper phthalocyanine and bathocuproine as an electron transport layer in photovoltaic cells with copper phthalocyanine/buckminsterfullerene heterojunctions: Thickness effects on photovoltaic performances,” Thin Solid Films, Vol. 515, pp. 3019-3023 (2007).
    [38] M. Ichikawa, C. Shimizu, T. Koyama, and Y. Taniguchi, “Improvement of photovoltaic performances of organic thin-film solar cells by fast electron mobility oxadiazole as an exciton blocking layer material,” Phys. Status Solidi A, Vol. 205, pp. 1222-1225 (2008).
    [39] M. Morsli, Y. Berredjem, A. Drici, B. Kouskoussa, A. Boulmokh, and J. C. Bernede, “Influence of Alq3 and/or Al2O3 layers at the C60/aluminum interface on the I-Vcharacteristics of CuPc/C60-based solar cells,” Phys. Status Solidi A, Vol. 205, pp. 1226-1232 (2008).
    [40] J. Yu, N. Wang, Y. Zang, and Y. Jiang, “Organic photovoltaic cells based on TPBi as a cathode buffer layer,” Sol. Energy Mater. Sol. Cells, Vol. 95, pp. 664-668 (2011).
    [41] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer,” Adv. Mater., Vol. 18, pp. 572-576 (2006).
    [42] J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study,” Appl. Phys. Lett., Vol. 91, pp. 113520 (2007).
    [43] J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y. Rubin, F. N. Diederich, M. M. Alvarez, S. J. Anz, and R. L. Whetten, “Photophysical properties of C60,” J. Phys. Chem., Vol. 95, pp. 11-12 (1991).
    [44] B. Miller, J. M. Rosamilia, G. Dabbagh, R. Tycko, R. C. Haddon, A. J. Muller, W. Wilson, D. W. Murphy, and A. F. Hebard, “Photoelectrochemical behavior of C60 films,” J. Am. Chem. Soc., Vol. 113, pp. 6291-6293 (1991).
    [45] S. Morita, A. Zakhidoy, and K. Yashino, “Doping effect of buckminsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescence,” Solid State Commun., Vol. 82, pp. 249-252 (1992).
    [46] M. R. Fraelich and R. B. Weisman, “Triplet states of C60 and C70 in solution: Long intrinsic lifetimes and energy pooling,” J. Phys. Chem., Vol. 97, pp. 11145-11147 (1993).
    [47] E. Frankevich, Y. Maruyama, and H. Ogata, “Mobility of charge carriers in vapor-phase grown C60 single crystal,” Chem. Phys. Lett., Vol. 214, pp. 39-44 (1993).
    [48] L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys., Vol. 86, pp. 487-496 (1999).
    [49] S. B. Lee, P. K. Khabibullaev, A. A. Zakhidov, S. Morita, and K. Yoshino, “Photovoltaic properties of C60/PPP heterojunction: molecular D-A photocell,” Synth. Met., Vol. 71, pp. 2247-2248 (1995).
    [50] N. S. Sariciftci, “Role of buckminsterfullerene, C60, in organic photoelectric devices,” Prog. Quant. Electr., Vol. 19, pp. 131-159 (1995).
    [51] A. D. Xia, S. J. Fu, H. B. Pan, X. Y. Zhang, Z. Xu, and R. K. Yuan, “Characteristics of heterojunction diode of C60/Chloroindium phthalocyanine,” Solid State Commun., Vol. 95, pp. 713-716 (1995).
    [52] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Morrati, and A. B. Holmes, “Exciton diffusion and dissociation in a poly(p-phenylenevinylene/C60 heterojunction photovoltaic cell,” Appl. Phys. Lett., Vol. 68, pp. 3120-3122 (1996).
    [53] P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett., Vol. 79, pp. 126-128 (2001).
    [54] R. E. Haufler, J. Conceicao, L. P. F. Chibante, Y. Chai, N. E. Byrne, S. Flanagan, M. M. Haley, S. C. O'Brien, C. Pan, Z. Xiao, W. E. Billups, M. A. Ciufolini, R. H. Hauge, J. L. Margrave, L. J. Wilson, R. F. Curl, and R. E. Smalley, “Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion,” J. Phys. Chem., Vol. 94, pp. 8634-8636 (1990).
    [55] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, “Solid C60: a new form of carbon,” Nature, Vol. 347, pp. 354-358 (1990).
    [56] D. Gebeyehu, “Bulk-heterojunction photovoltaic devices based on donor–acceptor organic small molecule blends,” Sol. Energy Mater. Sol. Cells, Vol. 79, pp. 81-92 (2003).
    [57] S. Yoo, B. Domercq, and B. Kippelen, “Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions,” Appl. Phys. Lett., Vol. 85, pp. 5427-5429 (2004).
    [58] C.-W. Chu, Y. Shao, V. Shrotriya, and Y. Yang, “Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions,” Appl. Phys. Lett., Vol. 86, pp. 243506 (2005).
    [59] J. Dai, X. Jiang, H. Wang, and D. Yan, “Organic photovoltaic cells with near infrared absorption spectrum,” Appl. Phys. Lett., Vol. 91, pp. 253503 (2007).
    [60] H. Kumar, P. Kumar, R. Bhardwaj, G. D. Sharma, S. Chand, S. C. Jain, and V. Kumar, “Broad spectral sensitivity and improved efficiency in CuPc/Sub-Pc organic photovoltaic devices,” J. Phys. D: Appl. Phys., Vol. 42, pp. 015103 (2009).
    [61] R. Salzman, J. Xue, B. Rand, A. Alexander, M. Thompson, and S. Forrest, “The effects of copper phthalocyanine purity on organic solar cell performance,” Org. Electron., Vol. 6, pp. 242-246 (2005).
    [62] J. Yang and T. Nguyen, “Effects of thin film processing on pentacene/C60 bilayer solar cell performance,” Org. Electron., Vol. 8, pp. 566-574 (2007).
    [63] J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A hybrid planar-mixed molecular heterojunction photovoltaic cell,” Adv. Mater., Vol. 17, pp. 66-71 (2005).
    [64] S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, “Thick C60:ZnPc bulk heterojunction solar cells with improved performance by film deposition on heated substrates,” Appl. Phys. Lett., Vol. 94, pp. 253303 (2009).
    [65] J. Meiss, N. Allinger, M. K. Riede, and K. Leo, “Improved light harvesting in tin-doped indum oxide (ITO)-free inverted bulk-heterojunction organic solar cells using capping layers,” Appl. Phys. Lett., Vol. 93, pp. 103311 (2008).
    [66] A. K. Pandey, P. E. Shaw, I. D. W. Samuel, and J.-M. Nunzi, “Effect of metal cathode reflectance on the exciton-dissociation efficiency in heterojunction organic solar cells,” Appl. Phys. Lett., Vol. 94, pp. 103303 (2009).
    [67] J. Meiss, M. Furno, S. Pfuetzner, K. Leo, and M. Riede, “Selective absorption enhancement in organic solar cells using light incoupling layers,” J. Appl. Phys., Vol. 107, pp. 053117 (2010).
    [68] J. Rostalski and D. Meissner, “Monochromatic versus solar efficiencies of organic solar cells,” Sol. Energy Mater. Sol. Cells, Vol. 61, pp. 87-95 (2000).
    [69] K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, “Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells,” J. Am. Chem. Soc., Vol. 128, pp. 8108-8109 (2006).
    [70] N. Li, B. E. Lassiter, R. R. Lunt, G. Wei, and S. R. Forrest, “Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells,” Appl. Phys. Lett., Vol. 94, pp. 023307 (2009).
    [71] X. Sun, Y. Liu, X. Xu, C. Yang, G. Yu, S. Chen, Z. Zhao, W. Qiu, Y. Li, and D. Zhu, “Novel electroactive and photoactive molecular materials based on conjugated donor-acceptor structures for optoelectronic device applications,” J. Phys. Chem. B, Vol. 109, pp. 10786-10792 (2005).
    [72] A. Cravino, P. Leriche, O. Aleveque, S. Roquet, and J. Roncali, “Light-emitting organic solar cells based on a 3D conjugated system with internal charge transfer,” Adv. Mater., Vol. 18, pp. 3033-3037 (2006).
    [73] K. Schulze, C. Uhrich, R. Schuppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold, and P. Bauerle, “Efficient Vacuum-Deposited Organic Solar Cells Based on a New Low-Bandgap Oligothiophene and Fullerene C60,” Adv. Mater., Vol. 18, pp. 2872-2875 (2006).
    [74] B. Rand, D. Burk, and S. Forrest, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells,” Phys. Rev. B, Vol. 75, pp. 113527 (2007).
    [75] M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc., Vol. 131, pp. 9281-9286 (2009).
    [76] H.-C. Yeh, S.-J. Yeh, and C.-T. Chen, “Readily synthesised arylamino fumaronitrile for non-doped red organic light-emitting diodes,” Chem. Commun., Vol. pp. 2632-2633 (2003).
    [77] S. Yeh, H. Chen, M. Wu, L. Chan, C. Chiang, H. Yeh, C. Chen, and J. Lee, “All non-dopant red–green–blue composing white organic light-emitting diodes,” Org. Electron., Vol. 7, pp. 137-143 (2006).
    [78] T. Oyamada, H. Uchiuzou, S. Akiyama, Y. Oku, N. Shimoji, K. Matsushige, H. Sasabe, and C. Adachi, “Lateral organic light-emitting diode with field-effect transistor characteristics,” J. Appl. Phys., Vol. 98, pp. 074506 (2005).
    [79] T.-Y. Chu and O.-K. Song, “Hole mobility of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl) benzidine investigated by using space-charge-limited currents,” Appl. Phys. Lett., Vol. 90, pp. 203512 (2007).
    [80] M. A. Khan, W. Xu, H. Khizar ul, Y. Bai, X. Y. Jiang, Z. L. Zhang, and W. Q. Zhu, “Electron mobility of 4,7-diphyenyl-1,10-phenanthroline estimated by using space-charge-limited currents,” J. Appl. Phys., Vol. 103, pp. 014509 (2008).
    [81] B. P. Rand, J. Xue, S. Uchida, and S. R. Forrest, “Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. I. Material properties,” J. Appl. Phys., Vol. 98, pp. 124902 (2005).
    [82] S. R. Forrest, “The limits to organic photovoltaic cell efficiency,” MRS Bull., Vol. 30, pp. 28-32 (2005).
    [83] M. Vogel, J. Strotmann, B. Johnev, M. C. Lux-Steiner, and K. Fostiropoulos, “Influence of nanoscale morphology in small molecule organic solar cells,” Thin Solid Films, Vol. 511-512, pp. 367-370 (2006).
    [84] K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev., Vol. 107, pp. 1233-1271 (2007).
    [85] J. Nelson, J. Kirkpatrick, and P. Ravirajan, “Factors limiting the efficiency of molecular photovoltaic devices,” Phys. Rev. B, Vol. 69, pp. 035337 (2004).
    [86] J. C. Wang, X. C. Ren, S. Q. Shi, C. W. Leung, and P. K. L. Chan, “Charge accumulation induced S-shape J–V curves in bilayer heterojunction organic solar cells,” Org. Electron., Vol. 12, pp. 880-885 (2011).
    [87] W. Tress, A. Petrich, M. Hummert, M. Hein, K. Leo, and M. Riede, “Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells,” Appl. Phys. Lett., Vol. 98, pp. 063301 (2011).
    [88] S.-W. Liu, C.-C. Lee, C.-F. Lin, J.-C. Huang, C.-T. Chen, and J.-H. Lee, “4-Hydroxy-8-methyl-1,5-naphthyridine aluminium chelate: a morphologically stable and efficient exciton-blocking material for organic photovoltaics with prolonged lifetime,” J. Mater. Chem., Vol. 20, pp. 7800-7806 (2010).
    [89] T. Stubinger and W. Brutting, “Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells,” J. Appl. Phys., Vol. 90, pp. 3632-3641 (2001).
    [90] A. C. Mayer, M. T. Lloyd, D. J. Herman, T. G. Kasen, and G. G. Malliaras, “Postfabrication annealing of pentacene-based photovoltaic cells,” Appl. Phys. Lett., Vol. 85, pp. 6272-6274 (2004).
    [91] Y. Shao, S. Sista, C.-W. Chu, D. Sievers, and Y. Yang, “Enhancement of tetracene photovoltaic devices with heat treatment,” Appl. Phys. Lett., Vol. 90, pp. 103501 (2007).
    [92] S. Yoo, W. Potscavagejr, B. Domercq, S. Han, T. Li, S. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, and S. Marder, “Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: Effects of exciton blocking layer thickness and thermal annealing,” Solid-State Electron., Vol. 51, pp. 1367-1375 (2007).
    [93] K. Suemori, T. Miyata, M. Hiramoto, and M. Yokoyama, “Enhanced Photovoltaic Performance in Fullerene:Phthalocyanine Codeposited Films Deposited on Heated Substrate,” Jpn. J. Appl. Phys., Vol. 43, pp. L1014-L1016 (2004).
    [94] B. J. Chen, W. Y. Lai, Z. Q. Gao, C. S. Lee, S. T. Lee, and W. A. Gambling, “Electron drift mobility and electroluminescent efficiency of tris(8-hydroxyquinolinolato) aluminum,” Appl. Phys. Lett., Vol. 75, pp. 4010-4012 (1999).
    [95] L. F. Cheng, L. S. Liao, W. Y. Lai, X. H. Sun, N. B. Wong, C. S. Lee, and S. T. Lee, “Effect of deposition rate on the morphology, chemistry and electroluminescence of tris-(8-hydroxyqiunoline) aluminum films,” Chem. Phys. Lett., Vol. 319, pp. 418-422 (2000).
    [96] S.-W. Liu, C.-C. Lee, C.-H. Wang, J.-H. Lee, C.-T. Chen, and J.-K. Wang, “Enhancing performance of planar molecule-based organic light-emitting diodes through deposition-rate optimization: Role of molecular packing,” Chem. Phys. Lett., Vol. 474, pp. 207-211 (2009).
    [97] C.-C. Lee, S.-W. Liu, and Y.-T. Chung, “Effect of deposition rate on device performance and lifetime of planar molecule-based organic light-emitting diodes,” J. Phys. D: Appl. Phys., Vol. 43, pp. 075102 (2010).
    [98] R. H. Jordan, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett., Vol. 69, pp. 1997-1999 (1996).
    [99] C.-J. Yang, T.-Y. Cho, C.-L. Lin, and C.-C. Wu, “Organic light-emitting devices integrated with solar cells: High contrast and energy recycling,” Appl. Phys. Lett., Vol. 90, pp. 173507 (2007).

    QR CODE