簡易檢索 / 詳目顯示

研究生: 林育民
Yu-min Lin
論文名稱: 高容量無線光通訊用於接取網路與橋樑備用路由之設計研究
High-capacity Optical Wireless Communications for Access Network and Bridge Backup Router: Design and Study
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 張宏鈞
Hung-Chun Chang
徐世祥
Shih-Hsiang Hsu
游易霖
Yi-Lin Yu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 86
中文關鍵詞: 光纖接取網路分波多工無線光通訊
外文關鍵詞: wavelength division multiplexing, fiber access network, optical wireless communications
相關次數: 點閱:377下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文致力於提升高容量無線光通訊系統之總傳輸容量,並將系統用於接取網路及橋樑備用路由。本無線光通訊系統以單模光纖接取並用透鏡組縮擴束收發光訊號;為提高傳輸容量將系統應用在分波多工傳輸,傳輸距離10公尺,系統最佳傳輸及對光損耗約為4.3 dB,傳輸雙向共20通道,每一通道傳輸速度達到10 Gb/s。而針對系統作傳輸品質誤碼率量測中,其結果在誤碼率為10-9的標準下功率償付值在波長1549.21 nm 傳輸單向約為0.37 dB、雙向約為0.41 dB,在波長1550.71 nm單向約為0.4 dB、雙向約為0.43 dB,並對系統進行傳輸通道干擾測試,在系統傳輸時於傳輸通道間加入熱空氣使氣流產生擾動,得到當空氣擾動下,誤碼率在10-5會出現錯誤平層,造成傳輸品質下降。
而為驗證本無線光通訊系統具有設置便利及機動性,能應用於光纖鋪設不易地帶作為接取技術,故設計一個分波多工被動光網路系統,並嘗試與本無線光通訊鏈結觀察其傳輸品質,其次為補償光訊號在經過光纖傳輸時的損耗,採用遠端泵激光源的方式進行訊號放大,並在實驗架構分別使用1、2、3、4公尺的摻鉺光纖進行分析,最後發現在泵激光源為85 mW經過一段距離傳輸之後剩餘34.5 mW時,4公尺的摻鉺光纖可使訊號光達到最大的增益輸出,並對於其傳輸品質進行誤碼率測試,在鏈結無線光通訊系統的功率償付值較未鏈結時,傳輸8通道只增加約0.41 dB,傳輸4通道時只增加約0.37 dB。
無線光通訊也可應用於光纖通訊系統作備用鏈結,我們設計以本論文無線光通訊系統用光開關切換當橋樑光纖備用鏈結,並於光纖路徑上加入光纖光柵反射訊號光供給橋樑受力監控用,且利用不同長度摻鉺光纖補償上下路徑功率差,經實驗得到通過本切換架構之上下路徑之訊號光功率差小於1 dB;而監控用訊號光在回傳50 km及60 km後之光訊雜比皆大於20 dB;傳輸品質在光纖總傳輸距離75 km及85 km誤碼率量測10-9情況下,中間切換為10公尺無線光通訊路徑接收功率比起為10公尺光纖路徑分別只差約0.41 dB及0.75 dB。


In this thesis, we studied on enhancing the total transmission data rate, as well as the quality of free-space optical (FSO) transmission. The proposed schemes are based on an advanced dense wavelength division multiplexing (DWDM) in bidirectional point-to-point FSO system. The wavelength ranges from 1545.98 to 1565.40 nm with channel spacing of 200 GHz (1.6 nm). Then each channel is externally modulated by data rate of 10 Gbit/s in non-return-to-zero (NRZ) formats. The 10 m losses induce by free space and coupling is only 4.3 dB. In the bidirectional system, the transmission capacity is 10 Ch x 10 Gb/s for each direction. We measured the bit error rate (BER) performance at both 1549.21- and 1550.71 nm wavelengths. For unidirectional transmission, the power penalties are 0.37 dB and 0.4 dB, respectively, as compared to the back-to-back transmission. For bidirectional transmission, the power penalties are 0.41 dB and 0.43 dB, respectively, for the same wavelengths. We also investigated the system performance under atmospheric turbulence effect. The measured system performance is strongly affected by the turbulence and results in an error floor of about 10-5.
To verify whether the proposed FSO scheme is suitable for optical communication, especially an area where optical fiber is difficult to deploy, we designed a passive optical network (PON) and compared system performance at the receiving end of a PON with or without 10 m FSO scheme. It is found that extra power penalties are only 0.37 and 0.41 dB, individually, for 4 and 8 channels transmission.
The FSO scheme is also used as a backup module for crossing-bridge transmission. To demonstrate the proposed FSO could play as an alternative for fiber transmission, we compared system performance of both wire and wireless optical transmission by parallel linking the proposed 10 m FSO scheme using an optical switch. In case the fiber link is failure due to unpredictable destroyed, then the 10 m FSO scheme could acts as the backup router. The power difference between fiber and 10 m FSO path is about 1 dB. Bit error rate (BER) performance of 10 m FSO path were measured with extra power penalties of 0.41 dB and 0.75 dB for 75 km and 85 km transmission, respectively, when compared to fiber wired router. The measured results confirm the proposed FSO scheme is feasible for FSO communications.

目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻探討 3 1.4 論文架構 6 第二章 無線光通訊原理及介紹 7 2.1 無線光通訊原理 8 2.2 大氣傳輸通道 9 2.2.1 大氣吸收 10 2.2.2 大氣散射 11 2.2.3 大氣通道損耗 13 2.2.4 大氣擾動 14 2.3 系統發射端 14 2.3.1 光源 14 2.3.2 光纖準直器 16 2.3.3 高斯光束 18 2.4 系統接收端 18 2.4.1 透鏡光縮束架構 18 2.4.2 幾何損耗 20 2.4.3 耦合損耗 21 2.5實驗相關元件及原理 22 2.5.1 Mach-Zehnder調變器 22 2.5.2 誤碼率原理 23 2.5.3 陣列波導光柵 25 第三章 高容量無線光通訊系統與通道測試 27 3.1 雙向準直系統架構與對光介紹 27 3.1.1 光學對準流程 29 3.1.2 多軸移動平台 31 3.2 準直誤差實驗 32 3.2.1 準直誤差實驗架構說明 32 3.2.2 準直誤差實驗結果 33 3.3 十公尺高容量分波多工單向傳輸實驗 35 3.3.1 實驗系統架構 35 3.3.2 傳輸實驗結果 36 3.4 十公尺高容量分波多工雙向傳輸實驗 39 3.4.1 實驗系統架構 39 3.4.2 傳輸實驗結果 40 3.5 傳輸通道大氣擾動實驗 43 3.5.1 實驗系統架構 43 3.5.2 傳輸實驗結果 46 3.6 本章小結 49 第四章 無線光通訊用於接取網路設計 50 4.1 分波多工被動光網路介紹 51 4.2 實驗重要元組件及原理介紹 54 4.3 結合無線光通訊之被動光網路實驗 56 4.3.1 實驗架構說明 56 4.3.2 實驗結果與討論 57 4.3.3 誤碼率量測 62 4.4 本章小結 65 第五章 無線光通訊用於橋樑備用路由設計 66 5.1 系統重要元組件介紹 66 5.1.1 光纖光柵感測元件 66 5.1.2 光開關簡介 69 5.2 無線光通訊用於橋樑備用路由系統實驗 70 5.2.1 實驗架構 70 5.2.2 實驗結果與討論 72 5.2.3 誤碼率量測 77 5.3 本章小結 79 第六章 結論與未來展望 80 6.1 結論 80 6.2 未來展望 81 參考文獻 82 圖表索引 圖1-1 無線光通訊耦進多模光纖傳輸系統 3 圖1-2 分波多工無線光通訊系統 4 圖1-3 多根光纖束接收系統 4 圖1-4 可控制之模擬室外環境的無線光通訊系統測試 5 圖2-1 無線光通訊傳輸方塊圖 8 圖2-2 雷射光直接傳輸的FSO系統 9 圖2-3 光纖耦光傳輸的FSO系統 9 圖2-4 不同波段在大氣下的吸收頻譜圖 10 圖2-5 波長785 nm與1550 nm在不同粒子參數與散射關係圖 11 圖2-6 光纖準直器架構示意圖 17 圖2-7 高斯光束強度分佈圖 18 圖2-8 Keplerian光擴束鏡架構圖 19 圖2-9 光發散幾何損耗示意圖 20 圖2-10 光入射光纖示意圖 22 圖2-11 Mach-Zehnder調變器 23 圖2-12 位元「0」與「1」的機率密度函數 24 圖2-14 陣列波導光柵架構圖 26 圖3-1 雙向準直系統 28 圖3-2 本無線光通訊系統各元件實體圖 29 圖3-3 系統對光步驟流程圖 30 圖3-4 系統之多軸移動平台 32 圖3-5 準直誤差實驗架構圖 33 圖3-6 X軸向準直誤差量測圖 33 圖3-7 Y軸向準直誤差量測圖 34 圖3-8 十公尺高容量分波多工單向實驗架構圖 35 圖3-9 傳送端訊號光頻譜圖 36 圖3-10 接收端訊號光頻譜圖 36 圖3-11 十公尺單向10通道誤碼率量測圖(Ch3) 38 圖3-12 十公尺單向10通道誤碼率量測圖(Ch4) 38 圖3-13 十公尺高容量分波多工雙向實驗架構圖 39 圖3-14 傳送端訊號光頻譜圖(光耦合器後) 40 圖3-15 接收端訊號光頻譜圖 41 圖3-16 十公尺雙向誤碼率量測圖(Ch3) 42 圖3-17 十公尺雙向誤碼率量測圖(Ch4) 42 圖3-18 大氣擾動實驗示意圖 44 圖3-19 大氣擾動吹風機實際架設圖 44 圖3-20 吹風機溫度變化分佈圖 45 圖3-21 前端大氣擾動誤碼率量測 46 圖3-22 前端大氣擾動眼圖量測(a)未擾動(b)擾動 46 圖3-23 中端大氣擾動誤碼率量測 47 圖3-24 中端大氣擾動眼圖量測(a)未擾動 (b)擾動 47 圖4-1 無線光通訊與被動光網路接取示意圖 51 圖4-2 被動光網路基本示意圖 52 圖4-3 WDM-PON的架構示意圖 53 圖4-4 摻鉺光纖吸收頻譜與放射頻譜 54 圖4-5 三階鉺離子能階躍遷圖 55 圖4-6 摻鉺光纖放大器自發性放射頻譜 55 圖4-7 結合無線光通訊與被動光網路實驗架構 56 圖4-8 不同長度摻鉺光纖的ASE頻譜圖 58 圖4-9 不同長度摻鉺光纖採用之訊號光波段的ASE頻譜圖 58 圖4-10 訊號光在不同長度摻鉺光纖的頻譜圖 59 圖4-11 傳輸端原始傳輸訊號光頻譜圖 60 圖4-12 遠端泵激後4 m摻鉺光纖訊號放大圖 60 圖4-13 接收端訊號光頻譜圖 61 圖4-14 PON系統與PON+10m FSO系統接收端頻譜圖 61 圖4-15 結合無線光通訊與被動光網路誤碼率量測實驗架構 62 圖4-16 PON系統誤碼率量測 64 圖4-17 PON系統接取10 m FSO系統誤碼率量測 64 圖5-1 布拉格光纖光柵穿透頻譜 68 圖5-2 布拉格光纖光柵反射頻譜 68 圖5-3 無線光通訊備用切換系統模組架構 70 圖5-4 無線光通訊備用切換系統量測架構圖 72 圖5-5 經過50 km光纖之訊號光頻譜圖 73 圖5-6 上下路徑之摻鉺光纖ASE頻譜圖 74 圖5-7 經過切換架構之上下路徑訊號光頻譜圖 75 圖5-8 用來反射監控光源之光柵穿透頻譜 76 圖5-9 網路局端量測之監控訊號光頻譜圖 76 圖5-10 誤碼率量測架構圖 77 圖5-11 上下路徑傳輸75 km之誤碼率量測圖 78 圖5-12 上下路徑傳輸85 km之誤碼率量測圖 79 表2-1 無線光通訊使用不同光源之比較表 7 表2-2 國際標準規格不同情況下能見度與衰減量關係表 13 表2-3 雷射安全規範表 16 表3-1 本論文系統光纖準直器規格 29 表3-2 系統架構估計平均參數 37 表4-1 系統功率償付值表 63 表5-1 本論文使用之光開關相關參數 70

[1] D. J. T. Heatley, D. R. Wisely, I. Neild, and P. Cochrane, “Optical Wireless: The story so far,” IEEE Commun. Mag., vol.36, pp 72-74, 1998.
[2] D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Commun. Mag., vol.42, pp. S2-S7, 2004.
[3] A. Mahdy and J. S. Deogun, “Wireless optical communications: a survey,” Proc. IEEE Wireless Commun. Networking Conf. (WCNC), pp. 2399-2404 2004.
[4] P. F. Szajowski, G. Nykolak, J. J. Auborn, H. M. Presby, G. E. Tourgee, E.J. Korevaar, J. J. Schuster, and I. I. Kim, “2.4 km free-space optical communication 1550 nm transmission link operating at 2.5 Gb/s – Experimental results,” Proc. SPIE, vol. 3532, pp. 29-40, Jan. 1999.
[5] D. Song , Y. Hurh , J. Cho , J. Lim , D. Lee , J. Lee and Y. Chung, “4 x 10 Gb/s terrestrial optical free space transmission over 1.2 km using an EDFA preamplifier with 100 GHz channel spacing,” Opt. Express, vol. 7, no.8, pp. 280, 2000.
[6] G. Nykolak, P. F. Szajowski, A. Cashion, H. M. Presby, G. E. Tourgee, and J. J. Auborn, “A 40 Gb/s DWDM free space optical transmission link over 4.4 km,” Proc. SPIE, vol. 3932, pp. 16-20, 2000.
[7] F. Marioni, Z. Sodnik, and F. E. Zocchi, “2.5-Gb/s free-space optics link over 1.1 km with direct fiber coupling to commercial devices,” Proc. SPIE, vol. 5550, pp. 60-69, 2004.
[8] P. L. Chen, S. T. Chang, S. T. Ji, S. C. Lin, H. H. Lin, H. L. Tsay, P. H. Huang, W. C. Chiang, W. C. Lin, S. L. Lee, H. W. Tsao, J. P. Wu, and J. Wu, “Demonstration of 16 channels 10 Gb/s WDM free space transmission over 2.16 km,” IEEE/LEOS Summer Topical Meetings, pp. 235-236, 2008.
[9] H. H. Refai, J. J. Sluss, and H. H. Refai, “The transmission of multiple RF signals in free space optics using wavelength division multiplexing,” Proc. SPIE, vol. 5793, pp. 136 -143, 2005.
[10] H. Moradi, H. H. Refai, and P. G. LoPresti, “Spatial Diversity for Fiber-Bundled FSO Nodes With Limited Mobility,” J. Lightw. Technol., vol. 30, no. 1, 2012.
[11] J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett., vol. 16, no. 3, 2012.
[12] K.-D. Langer, and J. Gubor, “Recent developments in optical wireless communications using infrared and visible light,” Proc. ICTON, vol. 3, pp. 146-151, 2007.
[13] 呂宛蒨,“160 Gbit/s 雙向分波多工之無線光通訊設計與系統傳輸”,國立臺灣科技大學碩士論文,2011。
[14] 易成林,“自由空間光通信技術的發展現狀與未來趨勢[J]”,現代商貿工業,19卷,9號,263-264頁,2007。
[15] GEMINI OBSERVATORY, “IR Transmission Spectra,” October 31, 2012, http://www.gemini.edu/?q=node/10789
[16] I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE, vol. 4214, pp. 26–37, Feb, 2001.
[17] L. Rayleigh, “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Philosophical Magazine, series 5, vol. 47, pp. 375-384, 1899.
[18] C.F. Bohren, and D. Huffman, “Absorption and scattering of light by small particles,” John Wiley, New York, 1983.
[19] H. C. van de Hulst, “Light scattering by small particles,” Dover, New York, 1981.
[20] M. Ijaz, Z. Ghassemlooy, J. Pesek, O. Fiser, H. L. Minh, and E. Bentley, “Modeling of fog and smoke attenuation in free space optical communications link under controlled laboratory conditions,” J. Lightw. Technol., vol. 31, pp. 1720-1726, Jun, 2013.
[21] Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, “Optical Wireless Communications: System and Channel Modelling with MATLABR,” pp. 111-116, 2012.
[22] M. Gebhart, E. Leitgeb, and J. Bregenzer, “Atmospheric effects on optical wireless links,” ConTEL, vol. 2, pp. 395-399, 2003.
[23] 楊國輝,“雷射原理與量測”,五南圖書公司,台中,第3章,2002。
[24] 曹培熙,“雷射安全措施”,國立臺灣大學物理所碩士論文,2002年6月。
[25] 李揚漢、許立根、譚昌文、洪鴻文、曹士林、楊淳良、趙亮琳,“光纖通訊網路”,五南圖書出版股份有限公司,臺北,2007。
[26] S. O. Kasap, “Optoelectronics and Photonics: Principles and Practices,” Pearson Education International, pp. 1-13, 2001.
[27] 耿繼業、何建娃,“幾何光學”,全華科技圖書股份有限公司,臺北,第11章,2009。
[28] Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, “Optical Wireless Communications: System and Channel Modelling with MATLABR,” pp.120-125, 2012.
[29] Chun-Nan Chen and Joseph C. Palais, “光纖通信與應用”,新文京開發出版股份有限公司,臺北,2004。
[30] R. Ramaswami, and K. N. Sivarajan, “Optical Network,” Morgan Kaufmann, USA, pp. 258-263, 2002.
[31] 葉嘉哲,“高速雙向無線光通訊參數設計與改良”,國立臺灣科技大學碩士論文,2013。
[32] H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis, and M. Uysal, “BER performance of FSO links over strong atmospheric turbulence channels with pointing errors,” IEEE Commun. Lett., vol. 12, no. 1, pp. 44-46, 2008.
[33] H. Le-Minh, Z. Ghassemlooy, M. Ijaz, S. Rajbhandari, O. Adebanjo, S. Ansari, and E. Leitgeb, “Experimental study of bit error rate of free space optics communications in laboratory controlled turbulence,” IEEE Globecom Workshop on Optical Wireless Communications, pp. 1072-1076, 2010.
[34] Z. Xiaoming and J. M. Kahn, “Free space optical communication through atmospheric turbulence channels,” IEEE Trans. Wireless Commun., vol. 50, pp. 1293-1300, 2002.
[35] T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun., vol. 8, pp. 951-957, 2009.
[36] J. B. Wang, M. Sheng, X. Song, Y. Jioa, and M. Chen, “Comments on BER performance of FSO links over strong atmospheric turbulence channels with pointing errors,” IEEE Commun. Lett., vol. 16, no. 1, pp. 22-23, 2012.
[37] T. Koonen, “Fiber to the home/fiber to the premises: what, where, and when?,” Proc. IEEE, vol. 94, no. 5, pp. 911-934, May 2006.
[38] 廖顯奎, 鄭旭志, 江家慶, 林淑娟,“光纖原理與應用技術”, 五南圖書出版公司, 2012。
[39] C.-H. Lee, “Passive optical networks for FTTx applications,” OFC/NFOEC 2005, vol. 3, pp. 3, March 2005.
[40] P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers: fundamentals and technology, ” San Diego, USA: Academic Press, 1999.
[41] Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quant. Electron., vol. 3, pp. 991-1007, 1997.
[42] L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow, and D. M. Krol, “Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Opt. Lett., vol. 37, no. 7, pp. 1148-1150, 2012.
[43] 廖協虹,“C+L-Band 摻鉺光纖放大器的研製與應用”,國立台灣科技大學電子工程研究所碩士論文,2004。
[44] K. O. Hill and M. Gerald, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, pp. 1263-1276, 1997.
[45] L. Liu, H. Zhang, Q. Zhao, Y. Liu, and F. Li, “Temperature-independent FBG pressure sensor with high sensitivity,” Opt. Fiber Technol., vol. 3, pp. 78-80, 2007.
[46] F. Yu and S. Yin, “Fiber optic sensors, ” New York, Marcel Dekker, 2002.
[47] 王崗嵘,“各類新式光開關發展現況”,光連,32期,pp. 55-62,2001。

無法下載圖示 全文公開日期 2019/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE