簡易檢索 / 詳目顯示

研究生: 許子揚
Tzu-Yang Hsu
論文名稱: 隨機衝擊下具自我恢復力退化系統之最佳置換門檻
Optimal Replacement Threshold for Deteriorating System with Resilience under Random Shocks
指導教授: 葉瑞徽
Ruey-Huei Yeh
口試委員: 曾世賢
Shih-Hsien Tseng
林希偉
Shi-Woei Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 66
中文關鍵詞: 自我恢復力置換門檻期望成本率
外文關鍵詞: expected cost rate
相關次數: 點閱:195下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自我恢復力之概念為當生物或系統受到外力衝擊時,能夠有承受衝擊的容受力以及短時間內恢復至較健康狀態之恢復力。隨著時間的推進,自我恢復力之概念已被實際應用至不同領域中,包括材料、電機、交通運輸等領域。過往文獻中,對於系統的失效較多著重於失效函數及外在衝擊的描寫,較少有文獻針對系統在具備有恢復力下的描寫。本文將自我恢復力納入考量並建構含有恢復力之系統狀態,且在受外在衝擊的情況下討論不同內部退化速率及恢復量變動下的置換策略、期望成本率以及恢復力之價值。系統除了自身內部退化外,也會受到外在衝擊影響,導致系統效能越來越差。在系統狀態逐漸增加的同時,運營成本也會逐步提升。為了達到最低的期望成本率以避免不必要的支出,當系統達某特定門檻時即進行系統置換。在以期望成本率作為績效指標下,本論文將找出不同系統的最佳置換門檻,並更進一步探討恢復力在系統中的價值。


    Resilience means a system has tolerance to resist shocks and can heal itself to a healthier state after suffering from exterior shocks. Resilience, or “self-healing”, is increasingly being applied to practice in different fields such as material field, electrical engineering field and transportation field and so on. In the past literatures, system failures have been more focused on failure rate and exterior shocks, yet few literatures have considered resilience capability into the model. Therefore, this paper takes resilience capability into account by constructing a system status with embedded resilience capability and discusses its replacing strategy, expected cost rate and the worth of resilience capability under the circumstances of suffering from exterior shocks, different deterioration rate and changing resilience value. In this model, the system performance is not only affected by interior deterioration but also exterior shocks, both leading to a poorer system performance. As the system performance worsen, the operation cost also rises. In order to have the lowest expected cost rate and avoid unnecessary expenditures, systems are recommended to be replaced while reaching the replacing threshold. Finally, some numerical examples are given to analyze the replacing thresholds of different systems and evaluate the worth of resilience capability.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第1章 緒論 1 1.1 研究背景與目的 1 1.2 研究架構 2 第2章 文獻探討 3 2.1 系統內部退化與外在衝擊 3 2.2 系統維修與置換 4 2.3 自我恢復力 7 第3章 數學模式 8 3.1 系統描述 8 3.2 符號定義 11 3.3 模型假設 13 3.4 系統狀態之退化模式 14 3.5 系統成本模式之建構 18 第4章 最佳置換策略 32 4.1 不受外在隨機衝擊下之系統狀態置換策略 32 4.2 受外在隨機衝擊下不具自我恢復之系統狀態置換策略 33 4.3 受外在隨機衝擊下具固定恢復比率之系統狀態置換策略 34 4.4 受外在隨機衝擊下恢復比率逐次遞減之系統狀態置換策略 35 4.5 系統恢復力於置換策略下之價值 36 第5章 數值分析 37 5.1 不受外在隨機衝擊下系統最佳置換時機 37 5.2 受外在隨機衝擊下不具自我恢復之系統最佳置換時機 39 5.3 受外在隨機衝擊下具固定恢復比率之系統最佳置換時機 40 5.4 受外在隨機衝擊下恢復比率逐次遞減之系統最佳置換時機 43 5.5 敏感度分析 45 5.5.1 置換成本變動下對不同退化系統之影響 45 5.5.2 外在衝擊強度變動下對不同退化系統之影響 49 5.5.3 外在衝擊頻率變動下對不同退化系統之影響 52 5.6 系統恢復力之價值 56 5.6.1 受外在隨機衝擊下固定恢復比率之系統恢復力之價值 56 5.6.2 受外在隨機衝擊下恢復比率逐次遞減系統恢復力之價值 59 第6章 結論與未來研究方向 62 6.1 結論 62 6.2 未來可研究方向 63 參考文獻 64

    [1] Holling, C. S. “Resilience and stability of ecological systems”, Annual review of ecology and systematics, 4(1), 1-23, 1973.
    [2] Amaro, R. I., Martins, R. C., Seabra, J. O., Renevier, N. M., & Teer, D. G. “Molybdenum disulphide/titanium low friction coating for gears application.” Tribology International, 38(4), 423-434, 2005.
    [3] 柯以諾,災害下運輸路網恢復力最佳化模式建立與分析. 2014. PhD Thesis.
    [4] Gardner, J. S., & Dekens, J. “Mountain hazards and the resilience of social–ecological systems: lessons learned in India and Canada.” Natural Hazards, 41(2), 317-336, 2007.
    [5] Yang, L., Sun, Q., & Ye, Z. S. “Designing mission abort strategies based on early-warning information: Application to UAV.” IEEE Transactions on Industrial Informatics, 16(1), 277-287, 2019.
    [6] 黃馨玫,在隨機衝擊下之可自我恢復線性退化系統之最佳置換時機,國立臺灣科技大學碩士論文,2021。
    [7] Zhang, Z., Si, X., Hu, C., & Lei, Y. “Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods.” European Journal of Operational Research, 271(3), 775-796, 2018.
    [8] Rafiee, K., Feng, Q., & Coit, D. W. “Reliability modeling for dependent competing failure processes with changing degradation rate.” IIE transactions, 46(5), 483-496, 2014.
    [9] Liu, H., Yeh, R. H., & Cai, B. “Reliability modeling for dependent competing failure processes of damage self-healing systems.” Computers & Industrial Engineering, 105, 55-62, 2017.
    [10] Zhao, X., Guo, X., & Wang, X. “Reliability and maintenance policies for a two-stage shock model with self-healing mechanism.” Reliability Engineering & System Safety, 172, 185-194, 2018.
    [11] Lin, J., Liao, G., Chen, M., & Yin, H. “Two-phase degradation modeling and remaining useful life prediction using nonlinear wiener process.” Computers & Industrial Engineering, 160, 107533, 2021.
    [12] Bouvard, K., Artus, S., Bérenguer, C., & Cocquempot, V. “Maintenance cost study for deteriorating systems: age-replacement policy vs. condition-based maintenance policy.” Journal of Polish Safety and Reliability Association, 1, 2018.
    [13] Eryilmaz, S. “Computing optimal replacement time and mean residual life in reliability shock models.” Computers & industrial engineering, 103, 40-45, 2017.
    [14] Montoro‐Cazorla, D., & Pérez‐Ocón, R. “System availability in a shock model under preventive repair and phase‐type distributions.” Applied Stochastic Models in Business and Industry, 26(6), 689-704, 2010.
    [15] Huynh, K. T. “An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process.” Reliability Engineering & System Safety, 213, 107695, 2021.
    [16] Nakagawa, T. “Shock and damage models in reliability theory.” Springer Science & Business Media, 2007.
    [17] Nakagawa, T., & Mizutani, S. “A summary of maintenance policies for a finite interval.” Reliability Engineering & System Safety, 94(1), 89-96, 2009.
    [18] Chien, Y. H., & Sheu, S. H. “Extended optimal age-replacement policy with minimal repair of a system subject to shocks.” European Journal of Operational Research, 174(1), 169-181, 2006.
    [19] Qiu, Q., Cui, L., & Wu, B. “Dynamic mission abort policy for systems operating in a controllable environment with self-healing mechanism.” Reliability Engineering & System Safety, 203, 107069, 2020.
    [20] Ling, M. H., Ng, H. K. T., & Tsui, K. L. “Bayesian and likelihood inferences on remaining useful life in two-phase degradation models under gamma process.” Reliability Engineering & System Safety, 184, 77-85, 2019.

    QR CODE