簡易檢索 / 詳目顯示

研究生: 洪喜音
Hsi-yin Hung
論文名稱: 週期性即時任務在具可靠度多核心系統上之能源管理
Dynamic power management for periodic tasks on reliable multi-core systems
指導教授: 陳維美
Wei-mei Chen
口試委員: 陳省隆
Hsing-lung Chen
阮聖彰
Shanq-jang Ruan
林敬舜
Ching-Shun Lin
吳晋賢
Chin-Hsien Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 50
中文關鍵詞: 動態電壓調頻可靠度週期性即時系統多核心系統
外文關鍵詞: DVFS, Reliable, Periodic, Real-Time, Multi-core system
相關次數: 點閱:278下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現在科技不斷的朝多核心方向發展,從早期在個人PC上發展多核心到智慧型手機也開始裝載多核心,反映出多核心系統越來越貼近生活,尤其多核心系統較單核心系統有較優的運算能力,能提供越來越大量資訊運算的需求。
當多核心系統運用越加廣泛,勢必面臨電源功耗提高及耗電快的事實,特別是智慧型手機,擁有越多功能、支援多媒體、影音…等,耗電的問題就愈發嚴重,故能源問題已是現在科技發展必須面對的十分重要的課題。
本論文提出一個方法能達到降低電源功耗的目的,同時在降低耗能的過程中更能兼具可靠度,本論文利用離散頻率的特性,將工作分成兩種頻率執行,並保證能在期限內完成的前提下降低其執行速度以達到降低電源功耗的目的。實驗結果顯示本論文所提出的方法能有效降低電源功耗又能兼具系統的可靠性。


Technology is continuously developing towards the direction of multi-core systems. Power consumption is an important issue of embedded multi-core applications when green computing is considered. In this thesis, we introduce an energy-efficient algorithm for scheduling periodic real-time tasks in multi-core systems, which can reduce the power consumption and maintain the reliability of systems. Simulation results show that our algorithm can reduce power consumption ranged from 6% to 10% and 20% to 27% in periodic real-time systems, compared to RA-DPM and Greedy, respectively.

致謝 i 摘要 i Abstract ii 目錄 iii 表目錄 v 圖目錄 vi 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 論文架構 2 第二章 文獻探討 4 2.1 即時系統模型 4 2.2 即時系統條件與EDF排程 5 2.3 電源功率模型 7 2.4 動態電壓管理 7 2.5 可靠性 8 第三章 研究方法 10 3.1 系統模組 10 3.1.1 任務模組(Task module) 10 3.1.2 多核心模組(Multi-core module) 11 3.1.3 電源模組(Energy module) 12 3.1.4 故障率指數模組(Exponential fault rate module) 14 3.2 參數定義 17 3.3 排程演算法 18 3.3.1 RA-DPM 20 3.3.2 Greedy 23 第四章 排程演算法 27 4.1 尋找fH和fL 27 4.2 演算法分析與流程 29 4.3 演算法應用 32 第五章 實驗模擬與探討 36 5.1 模擬環境與參數設定 36 5.2 模擬結果分析 37 5.2.1 執行5個任務、利用率為1之模擬分析 37 5.2.2 執行10個任務、利用率為1 之模擬分析 38 5.2.3 5個任務、利用率[1, 3.2]比較之模擬分析 40 5.2.4 10個任務週期為[20, 200]利用率[1, 3.2]比較之模擬分析 42 5.2.5 5 Tasks多核心利用率[1, 3.2]之模擬分析 43 5.2.6 10 Tasks多核心利用率[1, 3.2]之模擬分析 45 第六章 結論 46 參考文獻 47  

[1] H. Aydin, V. Devadas, and D. Zhu, “System-level energy management for periodic real-time tasks,” Proc. of the 27th IEEE Real-Time Systems Symposium, 2006, pp. 313–322.
[2] T. P. Baker, “An analysis of EDF schedulability on a multiprocessor,” IEEE Trans. on Parallel and Distributed Systems, 16, 8 (2005), pp.760–768.
[3] E. Bini, G. Buttazzo, and G. Lipari, “Speed modulation in energy-aware real-time systems,” Proc. of the 17th Euromicro Conf. on Real-Time Systems, 2005, pp.3-10.
[4] E. Bini, G. Buttazzo, and G. Lipari, “Minimizing CPU energy in real-time systems with discrete speed management,” ACM Trans. on Embedded Computing Systems, 2009, vol.8 No.4.
[5] E. Bini, M. Natale, and G. Buttazzo, “Sensitivity analysis for fixed-priority real-time systems,” Proc. 18th Euromicro Conf. on Real-Time Systems, 2006, pp.13-22.
[6] T. D. Burd , R. W. Brodersen, “Energy efficient CMOS microprocessor design,” Proc. of the 28th Hawaii International Conf. on System Sciences (HICSS'95), January 04-07, 1995, p.288.
[7] T. Burd and R. W.Brodersen, “Design issues for dynamic voltage scaling,” International Symposium on Low Power Electronics and Design, July 2000.
[8] J.-J. Chen and T.-W. Kuo, “Multiprocessor energy-efficient scheduling for real-time tasks with different power characteristics,” Proc. Int'l Conf. Parallel Processing, Jun. 2005, pp. 13-20.
[9] J.-J. Chen and L. Thiele, “Energy-efficient scheduling on homogeneous multiprocessor platforms,” SAC’10 (PADO Track), 2010.
[10] H. Chetto and M. Chetto, “Some results of the earliest deadline scheduling algorithm,” IEEE Trans. on Software Eng., Oct. 1989, vol. 15, no. 10.
[11] V. Degalahal, L. Lin, V. Narayanan, M. Kandemir, M.J. Irwin, “Soft errors issues in low-power caches” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, Oct. 2005, vol.13, no.10, pp. 1157-1165.
[12] V. Devadas and H. Aydin, “Coordinated power management of periodic real-time tasks on chip multiprocessors,” Green Computing Conf., 2010 International, Aug. 2010, pp. 61-72.
[13] J. Edmonds, “Scheduling in the dark,” Proc. of the thirty-first annual ACM symposium on Theory of computing, Atlanta, Georgia, United States, May 01-04, 1999, pp.179-188.
[14] P. Hazucha and C. Svensson, “Impact of CMOS technology scaling on the atmospheric neutron soft error rate,” IEEE Trans. on Nuclear Science, Dec. 2000, vol. 47, No. 6, pp. 2586–2594.
[15] J.J. Horning, H.C. Lauer, P.M. Melliar-Smith and B. Randell, “A program structure for error detection and recovery,” Proc. Conf. on Operating Systems: Theoretical and Practical Aspects, 23-25th April 1974, pp.177-193.
[16] S. Irani, S. Shukla , R. Gupta, “Algorithms for power savings,” Proc. of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, Baltimore, Maryland, Jan. 12-14, 2003.
[17] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase monitoring and prediction on real systems with application to dynamic power management,” Proc. of the 39th International Symposium on Micro-architecture (MICRO-39), Dec. 2006.
[18] T. Ishihara , H. Yasuura, “Voltage scheduling problem for dynamically variable voltage processors,” Proc. of the 1998 international symposium on Low power electronics and design, Monterey, California, United States, Aug. 10-12, 1998, pp.197-202.
[19] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage scaling for real-time embedded systems,” Proc. of the 41st Annual Conference on Design Automation (DAC’04), 2004.
[20] T. Karnik, B. Bloechel, K. Soumyanath, V. De, and S. Borkar, “Scaling trends of cosmic rays induced soft errors in static latches beyond 0.18u,” Symposium on VLSI Circuits, 2001.
[21] K.H. Kiln and O. H. Welch, “Distributed execution of recovery blocks: an approach for uniform treatment of hardware and software faults in real-time applications,” IEEE Trans. on Computers, 1989, vol.38 No.5, pp.626- 636.
[22] H. Kweon, Y. Do, J. Lee, and B. Ahn, “An efficient power-aware scheduling algorithm in real time system,” IEEE Pacific Rim Conf. on Communications, Computers and Signal Processing, Aug. 2007, pp. 350–353.
[23] W. Y. Lee, “Energy-saving DVFS scheduling of multiple periodic real-time tasks on multi-core processors,” IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications, Oct. 25-28, 2009, pp.216-223.
[24] J. P. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm-exact characterization and average case behavior," Proc. IEEE Real-Time Syst. Symp., 1989.
[25] P. Loborg, “Error recovery in automation: an overview,” Proc. AAAI 1994 Spring Symp. Detecting Resolving Errors Manuf. Syst., Stanford, CA, pp. 94–100.
[26] R. Pellizzoni and M. Caccamo, “Impact of peripheral-processor interference on WCET analysis of real-time embedded systems,” IEEE Trans. on Computers, Mar. 2010, vol.59 No.3, pp.400-415.
[27] A. Srinivasan and S. Baruah, “Deadline-based scheduling of periodic task systems on multiprocessors,” Information Processing Letters, Nov. 2002, vol. 84 No.2, pp. 93–98.
[28] X. Zhong , C.-Z. Xu, “System-wide energy minimization for real-time tasks: lower bound and approximation,” Proc. of the 2006 IEEE/ACM international conference on Computer-aided design, San Jose, California, Nov. 05-09, 2006.
[29] D. Zhu, “Reliability-aware dynamic energy management in dependable embedded real-time systems,” Proc. IEEE Real-Time and Embedded Technol. Appl. Symp. (RTAS’06), San Jose, CA, Apr. 2006.
[30] D. Zhu and H. Aydin, “Energy management for real-time embedded systems with reliability requirements,” Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD’06), San Jose, CA, Nov. 2006.
[31] D. Zhu and H. Aydin, “Reliability-aware energy management for periodic real-time tasks,” IEEE Trans. on Computers, Oct. 2009, vol. 58, no. 10, pp. 1382–1397.
[32] D. Zhu, R. Melhem, and D. Mosse, “The effects of energy management on reliability in real-time embedded systems,” Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD’04), San Jose, CA, Nov. 2004.
[33] J. F. Ziegler, “Trends in electronic reliability: effects of terrestrial cosmic rays,” http://www.srim.org/SERSERTrends.htm, 2004.
[34] Intel XScale Technology and Processors, www.intel.com/
[35] National Instruments Corporation, http://zone.ni.com/devzone/cda/tut/p/id/6459

QR CODE