簡易檢索 / 詳目顯示

研究生: 黃揚景
Yang-Jing Huang
論文名稱: 具最大功率點追蹤、自啟動電路及贏者全拿高壓選擇器之應用於熱電獵能系統的適應性導通時間多輸出升壓轉換器
An Adaptive On-time Multiple-output Boost Converter with Maximum Power Point Tracking, Self-start-up Circuit and Winner-take-all High Voltage Selector for Thermoelectric Energy Harvesting System
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 林長華
Chang-Hua Lin
于昌平
Chang-Ping Yu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 75
中文關鍵詞: 升壓轉換器能量擷取獵能熱電贏者全拿最大功率點追蹤
外文關鍵詞: Thermoelectric Energy, Winner-take-all
相關次數: 點閱:246下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文提出一應用於熱電獵能系統的高效率升壓轉換器及冷啟動電路,應用了多輸出架構以增進系統的整體轉換效率,為了提供合適的截止電壓給予不同輸出路徑之功率電晶體,本文提出一個以贏者全拿電路為基礎的高壓選擇器;同時,為了最小化在功率級的損耗,功率電晶體的大小也透過平衡切換損耗以及導通損耗的方式進行設計。應用了懸浮閘電晶體的比較器以及電壓偵測器也避免掉了帶差參考電路的使用,用以節省功耗以及提供可編程輸出電壓之特性。懸浮閘電晶體亦被應用在啟動電路的電荷幫浦,用來減小電晶體的臨界電壓以達到更低的操作電壓,因此可以達成在低於臨界電壓的380 mV 進行冷啟動,新提出的啟動電路與主電路分享了電感的使用,因此不需要增加額外的元件。為了最大化獵能系統的轉換效率,主升壓電路應用了適應性導通時間之控制方式以控制峰值電流,並且利用開路電壓法達到最大功率追蹤的目的,為了減少追蹤等待的時間,應用了二進位搜尋演算法;另一方面,穩態時利用累加搜尋法用來提供在穩態時有較小的輸入漣波。此原型晶片採用0:35 微米的互補式金氧半製程來實現。量測結果顯示:冷起動電路可在380 mV 的輸入電壓將系統啟動且冷起動時間約為1:4 秒。並且模擬結果顯示在988 W 的時候,可以產生最大效率95:85%。


A power-efficient boost converter for a thermoelectric energy harvesting system (EHS) is proposed in this thesis. To improve overall system power efficiency, a multiple output architecture is adopted. To provide suitable cut-off voltage to power transistors in different conditions of output voltage levels, a novel high-voltage-selector based on a winner-take-all circuit is proposed. Besides, power transistor dimensions are optimized to balance the conduction and the switching losses for minimizing the loss of the power stage. Floatinggate technologies are employed in voltage comparators and voltage detectors to avoid the power consumption of a conventional bandgap reference circuit and to provide reconfigurability for output voltage levels. Floating-gate transistors are also employed in a novel cold-start-up circuit to reduce the threshold voltage of transistors in a charge pump circuit so that the start-up voltage can be as low as 380 mV. The cold-start-up circuit exploits the same inductor as the main boost converter without extra external component. To maximize the energy harvesting efficiency, the boost converter adopts an adaptive on-time and peak current control scheme and a fractional open-circuit voltage approach to achieve maximum power point tracking. To reduce the tracking time, a binary and incremental search algorithm is exploited with small input voltage ripples. A prototyped chip is designed and fabricated in a 0:35um CMOS process. The measurement results show that the cold-start-up circuit can start-up the system when input voltage equals to 380 mV and the start-up time is about 1:4 seconds. Furthermore, the simulation result shows the peak efficiency is 95:85% when the input power equals to 988 W.

Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Design Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Background Knowledge of DC-DC Converters . . . . . . . . . . . . . . . . . . 8 2.1 DC-DC Converter for Voltage Scaling . . . . . . . . . . . . . . . . . . . 8 2.1.1 Linear Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Switching Capacitor DC-DC Converters . . . . . . . . . . . . . . 9 2.1.3 Inductive Switching DC-DC Converters . . . . . . . . . . . . . . 10 2.2 Fundamentals of DC-DC Boost Converters . . . . . . . . . . . . . . . . 11 2.2.1 The Principle of Inductor Volt-second Balance . . . . . . . . . . 11 2.2.2 The Principle of Capacitor Charge Balance . . . . . . . . . . . . 12 2.2.3 The Principle of Small Ripple Approximation . . . . . . . . . . . 13 2.3 Introduction of Operation Principle . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Discontinuous Conduction Mode (DCM) . . . . . . . . . . . . . 14 2.3.2 Continuous Conduction Mode (CCM) . . . . . . . . . . . . . . . 15 2.3.3 Boundary Conduction Mode (BCM) . . . . . . . . . . . . . . . . 15 2.4 The Mechanisms of Closed-loop Control . . . . . . . . . . . . . . . . . . 16 2.4.1 Pulse-width Modulation (PWM) . . . . . . . . . . . . . . . . . . 16 2.4.2 Pulse-frequency Modulation (PFM) . . . . . . . . . . . . . . . . 17 2.5 Analysis of Power Loss and Conversion Efficiency . . . . . . . . . . . . 18 2.6 Floating-gate Transistor and Reliability . . . . . . . . . . . . . . . . . . 19 3 Proposed Adaptive On-time Multi-output Boost Converter . . . . . . . . . . . 22 3.1 Architecture and Operation of Energy Harvesting System . . . . . . . . . 22 3.2 Proposed Energy Harvesting System . . . . . . . . . . . . . . . . . . . . 24 3.2.1 Cold-start-up Circuit . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.2 Main Boost Converter . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Implementation of the Energy Harvesting System . . . . . . . . . . . . . 35 3.3.1 Peak Current Control circuit . . . . . . . . . . . . . . . . . . . . 35 3.3.2 Maximum Power Point Tracking Control Block . . . . . . . . . . 40 3.3.3 Winner-take-all High Voltage Selector . . . . . . . . . . . . . . . 47 3.3.4 Power Loss Analysis . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.5 Floating-gate switched-capacitor Comparator . . . . . . . . . . . 54 3.3.6 Floating-gate-soft-start Voltage Detector . . . . . . . . . . . . . . 55 3.3.7 Zero-current-switching Comparator . . . . . . . . . . . . . . . . 58 4 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.1 Comparison and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 68 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

[1] Y. K. Ramadass and A. P. Chandrakasan, “A Batteryless Thermoelectric Energy-Harvesting Interface Circuit With 35 mV Startup Voltage,” IEEE Journal of Solid–State Circuits, vol. 46, pp. 486–487, January 2011.
[2] A. Shrivastava, N. E. Roberts, O. U. Khan, D. D. Wentzloff, and B. H. Calhoun, “A 10 mV-Input Boost Converter With Inductor Peak Current Control and Zero Detection for Thermoelectric and Solar Energy Harvesting With 220 mV Cold-Start and 14.5 dBm, 915 MHz RF Kick-Start,” IEEE Journal of Solid–State Circuits, vol. 50, pp. 1820–1832, August 2015.
[3] S. Lineykin and S. Ben-Yaakov, “Modeling and Analysis of Thermoelectric Modules,” IEEE Transactions on Industry Applications, vol. 43, pp. 505–512, March/April 2007.
[4] E. J. Carlson, L. Strunz, and B. P. Otis, “A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting,” IEEE Journal of Solid–State Circuits, vol. 45, pp. 741–750, April 2010.
[5] J.-P. Im, S.-W. Wang, S.-T. Ryu, and G.-H. Cho, “A 40 mV Transformer-Reuse Self-Startup Boost Converter With MPPT Control for Thermoelectric Energy Harvesting,” IEEE Journal of Solid–State Circuits, vol. 47, pp. 3055–3067, December 2012.
[6] P.-S. Weng, H.-Y. Tang, P.-C. Ku, and L.-H. Lu, “50 mV-Input Batteryless Boost Converter for Thermal Energy Harvesting,” IEEE Journal of Solid–State Circuits, vol. 48, pp. 1031–1041, April 2013.
[7] P.-H. Chen, K. Ishida, K. Ikeuchi, M. Xin Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “Startup Techniques for 95 mV Step-Up Converter by Capacitor Pass-On Scheme and VTH-Tuned Oscillator With Fixed Charge Programming,” IEEE Journal of Solid–State Circuits, vol. 47, pp. 1252–1260, May 2012.
[8] J. Katic, S. Rodriguez, and A. Rusu, “A Dual-Output Thermoelectric Energy Harvesting Interface With 86.6% Peak Efficiency at 30 uW and Total Control Power of 160 nW,” IEEE Journal of Solid–State Circuits, vol. 51, pp. 1928–1937, August 2016.
[9] J. Kim and C. Kim, “A DC–DC Boost Converter With Variation-Tolerant MPPT Technique and Efficient ZCS Circuit for Thermoelectric Energy Harvesting Applications,” IEEE Transactions on Power Electronics, vol. 28, pp. 3827–3833, August 2013.
[10] S.-Y. Peng, L.-H. Liu, P.-K. Chang, and T.-Y. Wang, “A Power-Efficient Reconfigurable Output-Capacitor-Less Low-Drop-Out Regulator for Low-Power Analog Sensing Front-End,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 64, pp. 1318 – 1327, May 2017.
[11] D. Maksimovic, “Power management model and implementation of power management ICs for next generation wireless applications,” Tutorial Presented at the International Conference on Circuits and System(ISCAS), 2002.
[12] P. Favrat, P. Deval, and M. J. Declercq, “A High-Efficiency CMOS Voltage Doubler,” IEEE Journal of Solid–State Circuits, vol. 33, pp. 410–416, March 1998.
[13] S.-Y. Peng, P. E. Hasler, and D. V. Anderson, “An Analog Programmable Multidimensional Radial Basis Function Based Classifier,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 54, pp. 2148–2158, October 2007.
[14] P. Pavan, L. Larcher, and A. Marmiroli, Floating Gate Devices: Operation and Compact Modeling. NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW: Kluwer Academic Publishers, 2004.
[15] Y. Leblebici and S.-M. Kang, “Modeling and Simulation of Hot-Carrier-Induced Device Degradation in MOS Circuits,” IEEE Journal of Solid–State Circuits, vol. 28, pp. 585–595, May 1993.
[16] S. S. Chung, C.-M. Yih, S.-M. Cheng, and M.-S. Liang, “A New Technique for Hot Carrier Reliability Evaluations of Flash Memory Cell After Long-Term Program/Erase Cycles,” IEEE Transactions on Electron Devices, vol. 46, no. 9, pp. 1883–1889, 1999.
[17] Y. Ma, T. G. Gilliland, B. Wang, R. Paulsen, A. Pesavento, C.-H. Wang, H. Nguyen, T. Humes, and C. Diorio, “Reliability of pFET EEPROM With 70-ÅTunnel Oxide Manufactured in Generic Logic CMOS Processes,” IEEE Transactions on Device and Materials Reliability, vol. 4, no. 3, pp. 353–358, 2004.
[18] V. Srinivasan, G. J. Serrano, J. Gray, and P. Hasler, “A Precision CMOS Amplifier Using Floating-Gate Transistors for Offset Cancellation,” IEEE Journal of Solid–State Circuits, vol. 42, pp. 280–291, January 2007.
[19] V. Srinivasan, G. J. Serrano, C. M. Twigg, and P. Hasler, “A Floating-Gate-Based Programmable CMOS Reference,” IEEE Journal of Solid–State Circuits, vol. 55, pp. 3448–3456, May 2008.
[20] D. W. Graham, E. Farquhar, B. Degnan, C. Gordon, and P. Hasler, “Indirect Programming of Floating-Gate Transistors,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 54, pp. 951–963, May 2007.
[21] H.-H. Wu, C.-L. Wei, Y.-C. Hsu, and R. B. Darling, “Adaptive Peak-Inductor-Current-Controlled PFM Boost Converter With a Near-Threshold Startup Voltage and High Efficiency,” IEEE Transactions on Power Electronics, vol. 30, pp. 1956–1965, April 2015.
[22] T.-Y. Wang, L.-H. Liu, and S.-Y. Peng, “A Power-Efficient Highly Linear Reconfigurable Biopotential Sensing Amplifier Using Gate-Balanced Pseudoresistors,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,vol. 62, pp. 199–200, February 2015.
[23] X. Jing and P. K. Mok, “A Fast Fixed-Frequency Adaptive-On-Time Boost Converter With Light Load Efficiency Enhancement and Predictable Noise Spectrum,” IEEE Journal of Solid–State Circuits, vol. 48, pp. 2442–2456, October 2013.
[24] S. Cho, N. Kim, S. Park, and S. Kim, “A Coreless Maximum Power Point Tracking Circuit of Thermoelectric Generators for Battery Charging Systems,” IEEE Proceedings of the Asian Solid-State Circuits Conference (A-SSCC), vol. 9.
[25] H. Kim, Y.-J. Min, C.-H. Jeong, K.-Y. Kim, C. Kim, and S.-W. Kim, “A 1-mW Solar-Energy-Harvesting Circuit Using an Adaptive MPPT With a SAR and a Counter,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 60, pp. 331–335, June 2013.
[26] J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead, “Winner-Take-All Networks of O(N) Complexity,” Advances in Neural Information Processing Systems I, vol. 1, pp. 703–711, 1989.
[27] S. Bandyopadhyay, P. P. andcAndrew C. Lysaght, K. M. Stankovic, and A. P. Chandrakasan, “A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants,” IEEE Journal of Solid–State Circuits, vol. 49, pp. 2812–2824, December 2014.
[28] R. D. Prabha and G. A. Rinc´on-Mora, “0.18-μm Light-Harvesting Battery-Assisted Charger–Supply CMOS System,” IEEE Transactions on Power Electronics, vol. 31, pp. 2950–2958, April 2016.

QR CODE