簡易檢索 / 詳目顯示

研究生: Danish Mehmood
Danish Mehmood
論文名稱: 最小曼哈頓距離應用於多準則決策之被動式電力濾波器最佳化問題
Minimum Manhattan Distance Approach to Multiple Criteria Decision Making in Passive Power Filters Optimization Problems
指導教授: 楊念哲
Nien-Che Yang
口試委員: 張建國
Chien-kuo Chang
黃維澤
Wei-Tzer Huang
謝廷彥
Ting-Yen Hsieh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 74
中文關鍵詞: 諧波被動式電力濾波器最佳化設計人工蜂群演算法蜂群演算法柏拉圖最佳化最小曼哈頓距離
外文關鍵詞: Harmonics, Passive Power Filters, Optimal Design, Artificial Bee Colony Algorithm, Pareto Front, Bee Swarm Optimization Algorithm, Minimum Manhattan Distance (MMD)
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文擬研提被動式電力濾波器之最佳化設計,用於減少電力系統諧波汙染及改善功率因數。由於被動式電力濾波器設計問題為複雜的多目標優化問題,本文將藉由人工蜂群演算法與蜂群演算法,結合柏拉圖最佳化,提出兩種被動式電力濾波器之最佳化設計方案。在設計多目標最佳化問題中,考慮了單通濾波器、二階阻尼濾波器、三階阻尼濾波器與C-Type阻尼濾波器的特性。在多準則決策中,本文利用最小曼哈頓距離從柏拉圖最佳化的解集合中挑選出最終解決方案。一系列案例研究亦將被用於驗證所研提方法之有效性與優越性。


Passive power filters (PPFs) are most effective in mitigating harmonics pollutions from the power system but the design of PPFs involves many objectives which makes them a complex multiple objectives optimization problem. This thesis is about to propose two new methods to achieve an optimal design of PPFs based on the famous artificial bee colony (ABC) and bee swarm optimization (BSO) algorithms with the help of an external archive and Pareto optimality. Single tuned, second-order damped, third-order damped, and C-Type damped order filter are four different types of PPFs and their characteristics are considered for the design optimization problem.
In this multi-criteria decision making (MCDM) problem, a minimum Manhattan distance (MMD) approach is used to select the final solution among the Pareto-optimal set. A series of case studies have examined to prove the efficiency and better performance of the proposed method over previous famous algorithms.

摘要 I Abstract II Acknowledgment III Contents IV Figures VI Tables VII 1. Introduction 1 1.1 Background 1 1.2 Literature Reviews 1 1.3 Aim and Contributions 4 2. Power Filters 6 2.1 Classification of Power Filters 6 2.2 Passive Power Filters 7 2.3 Types of PPFs 8 2.3.1 Single-tuned Filters 9 2.3.2 Second-order Damped Filters 9 2.3.3 Third-order Damped Filters 9 2.3.4 C-type Damped Filters 10 3. Passive Power Filter Design 11 3.1 Objective Function 12 3.1.1 Minimizing Total Harmonic Distortion of Current 12 3.1.2 Minimizing Total Harmonic Distortion of Voltage 13 3.1.3 Minimizing Initial Investment Cost 13 3.1.4 Maximizing Fundamental Reactive Power Compensation 13 3.2 Constraints 14 3.2.1 Total Harmonic Distortion 14 3.2.2 Individual Harmonic Distortion 14 3.2.3 Total Fundamental Reactive Power Compensation 15 4. Selection Strategy of Filter Topologies for PPF set 16 4.1 Selection Mechanism for PPFs Location 16 4.2 Selection Mechanism for Topology Combination of PPFs 16 4.3 Selection Mechanism for PPFs Parameters 19 4.4 Multi-Criteria Decision Making 19 5. Proposed Algorithm 21 5.1 Artificial Bee Colony Algorithm 21 5.2 Bee Swarm Optimization Algorithm 24 5.3 Multi-objective ABC and Multi-objective BSO 28 5.3.1 Multi-Objective Artificial Bee Colony Algorithm 28 5.3.2 Multi-objective Bee Swarm Optimization Algorithm (MOBSO) 35 6. Simulation Results 39 6.1 Accuracy of the Proposed Methods 41 6.2 Performance of the Proposed Methods 43 6.3 MMD Results by merging all algorithms 46 6.4 Best Type of PPF by Each Algorithm 48 7. Conclusion 51 7.1 Conclusion 51 7.2 Future Work 51 References 52 Appendix 58

[1] M. Mohammadi, “Bacterial foraging optimization and adaptive version for economically optimum sitting, sizing and harmonic tuning orders setting of LC harmonic passive power filters in radial distribution systems with linear and nonlinear loads,” Appl. Soft Comput. J., vol. 29, pp. 345–356, 2015.
[2] G. W. Chang et al., “A study of passive harmonic filter planning for an AC microgrid,” IEEE Power Energy Soc. Gen. Meet., vol. 2015, pp. 15–18, 2015.
[3] M. Mohammadi, A. M. Rozbahani, and M. Montazeri, “Multi criteria simultaneous planning of passive filters and distributed generation simultaneously in distribution system considering nonlinear loads with adaptive bacterial foraging optimization approach,” Int. J. Electr. Power Energy Syst., vol. 79, pp. 253–262, 2016.
[4] A. Kazerooni, C. Brozio, E. Chalmers, L. Koo, and Z. Emin, “Standard passive harmonic filter for wind farm connections,” CIRED - Open Access Proc. J., vol. 2017, no. 1, pp. 860–864, 2017.
[5] M. Aghaei and A. Dastfan, “A graph search algorithm: Optimal placement of passive harmonic filters in a power system,” J. Artif. Intell. Data Min., vol. 3, no. 2, pp. 217–224, 2015.
[6] D. Zhao, W. Liu, K. Shen, G. Zhao, and X. Wang, “Multi-objective optimal design of passive power filter for aircraft starter/generator system application,” J. Eng., vol. 2018, no. 13, pp. 636–641, 2018.
[7] H. Hu, Z. He, and S. Gao, “Passive filter design for China high-speed railway with considering harmonic resonance and characteristic harmonics,” IEEE Trans. Power Deliv., vol. 30, no. 1, pp. 505–514, 2015.
[8] J. C. Das, “Passive filters - potentialities and limitations,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 232–241, 2004.
[9] M. Milovanović, J. Radosavljević, D. Klimenta, and B. Perović, “GA-based approach for optimal placement and sizing of passive power filters to reduce harmonics in distorted radial distribution systems,” Electr. Eng., vol. 101, no. 3, pp. 787–803, 2019.
[10] S. X. Chen, Y. S. F. Eddy, H. B. Gooi, M. Q.Wang, and S. F. Lu, “A centralized reactive power compensation system for LV distribution networks,” IEEE Trans. Power Syst., vol. 30, no. 1, pp. 274–284, 2015.
[11] Y. Y. Hong and W. J. Liao, “Optimal passive filter planning considering probabilistic parameters using cumulant and adaptive dynamic clone selection algorithm,” Int. J. Electr. Power Energy Syst., vol. 45, no. 1, pp. 159–166, 2013.
[12] S. H. E. Abdel Aleem, M. E. Balci, and S. Sakar, “Effective utilization of cables and transformers using passive filters for non-linear loads,” Int. J. Electr. Power Energy Syst., vol. 71, pp. 344–350, 2015.
[13] Y. Chang, W. Tseng, and T. Tsao, “Application of combined feasible-direction method and genetic algorithm to optimal planning of harmonic filters considering uncertainty conditions,” IEE Proc. - Gener. Transm. Distrib., vol. 152, no. 5, pp. 729–736, 2005.
[14] Z. Juan, G. Yi-nan, and Z. Shu-ying, “Optimal design of passive power filters of an asymmetrical system based on genetic algorithm,” Procedia Earth Planet. Sci., vol. 1, no. 1, pp. 1440–1447, 2009.
[15] C. Chou, C. Lio, J. Lee, and K. Lee, “Optimal planning of large passive-harmonic-filters set at high voltage level,” IEEE Trans. Power Syst., vol. 15, no. 1, pp. 433–441, 2000.
[16] P. Mansouri, B. Asady, and N. Gupta, “The Bisection-Artificial Bee Colony algorithm to solve fixed point problems,” Appl. Soft Comput. J., vol. 26, pp. 143–148, 2015.
[17] A. soufyane Benyoucef, A. Chouder, K. Kara, S. Silvestre, and O. A. Sahed, “Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions,” Appl. Soft Comput. J., vol. 32, pp. 38–48, 2015.
[18] W. Zou, Y. Zhu, H. Chen, and B. Zhang, “Solving multiobjective optimization problems using artificial bee colony algorithm,” Discret. Dyn. Nat. Soc., vol. 2011, 2011.
[19] B. Akay, “Synchronous and asynchronous Pareto-based multi-objective Artificial Bee Colony algorithms,” J. Glob. Optim., vol. 57, no. 2, pp. 415–445, 2013.
[20] X. Yi and Y. Zhou, “A dynamic multi-colony artificial bee colony algorithm for multi-objective optimization,” Appl. Soft Comput., vol. 35, pp. 766–785, 2015.
[21] A. Reza, R. Hedayatzadeh, B. Hassanizadeh, and K. Ziarati, “A multi-objective artificial bee colony algorithm,” Swarm Evol. Comput., vol. 2, pp. 39–52, 2012.
[22] X.Yi, Y. Zhou, and H. Liu, “An elitism based multi-objective artificial bee colony algorithm,” Eur. J. Oper. Res., vol. 245, 2015.
[23] D. Bose, S. Biswas, A.V. Vasilakos, and S. Laha, “Optimal filter design using an improved artificial bee colony algorithm,” Inf. Sci. (Ny)., vol. 281, pp. 443–461, 2014.
[24] T. Niknam and F. Golestaneh, “Enhanced bee swarm optimization algorithm for dynamic economic dispatch,” IEEE Syst. J., vol. 7, no. 4, pp. 754–762, 2013.
[25] D. Chaudhary, B. Kumar, S. Sakshi, and R. Khanna, “Improved Bee swarm optimization algorithm for load scheduling in cloud computing environment,” in Data Science and Analytics, 2018, pp. 400–413.
[26] C. C. Lo, S. H. Tsai, and B. S. Lin, “Economic dispatch of chiller plant by improved ripple bee swarm optimization algorithm for saving energy,” Appl. Therm. Eng., vol. 100, pp. 1140–1148, 2016.
[27] Y. Djenouri, A. Belhadi, and R. Belkebir, “Bees swarm optimization guided by data mining techniques for document information retrieval,” Expert Syst. Appl., vol. 94, pp. 126–136, 2018.
[28] Y. Djenouri, D. Djenouri, A. Belhadi, P. Fournier-Viger, J. Chun-Wei Lin, and A. Bendjoudi, “Exploiting GPU parallelism in improving bees swarm optimization for mining big transactional databases,” Inf. Sci. (Ny)., vol. 496, pp. 326–342, 2019.
[29] N. K. Kamila, L. Jena, and H. K. Bhuyan, “Pareto-based multi-objective optimization for classification in data mining,” Cluster Comput., vol. 19, no. 4, pp. 1723–1745, 2016.
[30] H. Jiang, J. Chen, T. Liu, and H. Fu, “Design of an FBG sensor network based on pareto multi-objective optimization,” IEEE Photonics Technol. Lett., vol. 25, no. 15, pp. 1450–1453, 2013.
[31] N. C. Yang and M. D. Le, “Multi-objective bat algorithm with time-varying inertia weights for optimal design of passive power filters set,” IET Gener. Transm. Distrib., vol. 9, no. 7, pp. 644–654, 2015.
[32] N. C. Yang and M. D. Le, “Optimal design of passive power filters based on multi-objective bat algorithm and pareto front,” Appl. Soft Comput. J., vol. 35, pp. 257–266, 2015.
[33] M. Khoroshiltseva, D. Slanzi, and I. Poli, “A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices,” Appl. Energy, vol. 184, pp. 1400–1410, 2016.
[34] D. Karaboga, “An idea based on honey bee swarm for numerical optimization, technical report - TR06,” Tech. Report, Erciyes Univ., 2005.
[35] D. Karaboga and B. Basturk, “On the performance of artificial bee colony (ABC) algorithm,” Appl. Soft Comput., vol. 8, pp. 687–697, 2008.
[36] Y. Zhang, W. Zhang, D. Gong, Y. Guo, and L. Li, “An improved PSO algorithm for interval multi-objective optimization systems,” IEICE Trans. Inf. Syst., vol. E99D, no. 9, pp. 2381–2384, 2016.
[37] M. Kefayat, A. Lashkar Ara, and S. A. Nabavi Niaki, “A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources,” Energy Convers. Manag., vol. 92, pp. 149–161, 2015.
[38] W. Y. Chiu, G. G. Yen, and T. K. Juan, “Minimum Manhattan distance approach to multiple criteria decision making in Multiobjective optimization problems,” IEEE Trans. Evol. Comput., vol. 20, no. 6, pp. 972–985, 2016.
[39] T. Roles and P. Systems, The Roles of Filters in Power Systems. 2008.
[40] “IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems,” IEEE Std 519-1992, pp. 1–112, Apr.1993.
[41] D. Karaboga and B. Akay, “A modified Artificial Bee Colony (ABC) algorithm for constrained optimization problems,” Applied Soft Computing Journal, vol. 11, no. 3. pp. 3021–3031, 2011.
[42] R. Akbari, A. Mohammadi, and K. Ziarati, “A powerful bee swarm optimization algorithm,” INMIC 2009 - 2009 IEEE 13th Int. Multitopic Conf., pp. 1–6, 2009.
[43] M. Mernik, S. H. Liu, D. Karaboga, and M. Črepinšek, “On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation,” Inf. Sci. (Ny)., vol. 291, no. C, pp. 115–127, 2015.
[44] Y. Xiang, Y. Peng, Y. Zhong, Z. Chen, X. Lu, and X. Zhong, “A particle swarm inspired multi-elitist artificial bee colony algorithm for real-parameter optimization,” Comput. Optim. Appl., vol. 57, no. 2, pp. 493–516, 2014.
[45] X. Cai, Y. Li, Z. Fan, and Q. Zhang, “An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization,” IEEE Trans. Evol. Comput., vol. 19, no. 4, pp. 508–523, 2015.
[46] C. A. Coello, G. Toscano Pulido, and M. Lechuga, “Handling multiple objectives with particle swarm optimization,” Evol. Comput. IEEE Trans., vol. 8, pp. 256–279, 2004.
[47] R. Akbari and K. Ziarati, “Multi-objective bee swarm optimization,” Int. J. Innov. Comput. Inf. Control, vol. 8, no. 1 B, pp. 715–726, 2012.
[48] D. A.Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary algorithm research : A history and analysis,” Tech. Rep. TR-98-03, Grad. Sch. Eng. Air Force Inst. Technol. Wright-Patterson AFB, Ohio, vol. 1998, pp. 1–88, 1998.

無法下載圖示 全文公開日期 2025/07/27 (校內網路)
全文公開日期 2025/07/27 (校外網路)
全文公開日期 2025/07/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE