簡易檢索 / 詳目顯示

研究生: 張晋銘
Jin-ming Chang
論文名稱: 單相換流器市電併網控制系統之研製
Development of Single-Phase Grid-Connected Inverter Systems
指導教授: 葉勝年
Sheng-Nian Yeh
黃仲欽
Jong-Chin Hwang
口試委員: 賴炎生
Yen-shin Lai
劉添華
Tian-hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 85
中文關鍵詞: 單相市電併網直流-直流功率轉換器直流-交流功率轉換器功率補償
外文關鍵詞: single-phase grid-connection, dc-dc power converter, dc-ac power converter, power compensating control
相關次數: 點閱:290下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文旨在分析及製作昇壓型直流-直流功率轉換器與單相直流-交流功率轉換器之系統。本系統藉偵測功率轉換器之昇壓型輸入電壓、電流及直流鏈電壓,調節昇壓型功率轉換器達到直流-直流功率轉換器之電流控制,以配合輸入端之直流電源提供市電併網運轉;單相直流-交流功率轉換器控制需市電角位置估測,本文採用數位反正切函數計算角位置,並採用同步旋轉座標直-交軸電流閉迴路控制策略,以達直流-交流功率轉換器之輸出電感電流控制及提供接近1.0功率因數至市電側。在系統整合運轉方面,直流-交流功率轉換器採用直流鏈電壓閉迴路、直-交軸電壓前饋補償與功率補償策略,減少直-交軸電流振盪,使換流器能提供穩定之直流鏈電壓及功率,以提高整體系統響應速率並降低電流諧波。
      本文已建立直流-直流及直流-交流功率轉換器之整體系統數學模式,並以Matlab / Simulink套裝應用軟體模擬,驗證系統控制器之可行性。實體製作方面採用高性能之數位信號處理器TMS320F28335為整體系統之控制核心,其電壓及電流閉迴路控制策略皆由軟體程式完成,以減少硬體電路,提升系統運轉可靠度。本文已完成520W之整體系統測試,其昇壓型直流-直流功率轉換器的輸入電壓為140V,直流鏈電壓為200V,市電側的單相交流電壓為110V,60Hz,實測電感電流總諧波失真率為6.71%,市電側的功率因數為0.996,整體效率為91.2%。


    This thesis is concerned with the analysis and implementation of boost-type dc-dc power converter and single-phase dc-ac power converter system. The output power of overall system is adjusted by detecting the input voltage and current as well as the dc-link voltage of boost converter. The designed system can be operated in grid-connected fashion. In single-phase dc-ac power converter, the utility angle is used to calculate the arc-tangent for frame transformation. The controllers, which use the d-q current control modes, are performed under stationary reference frame , thereby yielding current and power stably to utility. Finally, the introduction of the dc-link fixed-voltage control and power compensating control in overall power converter system have improved system performance and reduce the input current harmonics.
    In this thesis, the mathematical models of dc-dc and dc-ac power converters are built and simulated by Matlab/Simulink. Then, a high-performance digital signal processor, TMS320F28335, is used to control the system with the voltage and current feedbacks. The control of overall system is conducted by software to reduce circuit component and improve system reliability. A prototype of 520W power conversion system is developed under grid-connection. The input voltage of boost converter is 140V. The dc-link voltage is 200V. Under single-phase grid-connected operation, the output voltage is 110V, 60Hz. Besides, the experimental data show that the efficiency of the whole system reaches 91.2% with current harmonic distortion of 6.71% and power factor of 0.996.

    目錄 中文摘要I 英文摘要II 誌  謝III 目  錄IV 符號索引VI 圖表索引IX 第一章 緒論1   1.1研究動機及目的1   1.2 文獻探討1   1.3 系統架構及本文特色2   1.4 本文大綱5 第二章 單相市電併網之分析及控制6   2.1 前言.6   2.2 單相直流-交流功率轉換器之數學模式6   2.3 單相直流-交流功率轉換器之正弦脈波寬調變控制8   2.4 數位二階濾波器10   2.5 單相市電併網控制15     2.5.1 單相市電併網之電流預測控制16     2.5.2 單相市電併網之同步旋轉座標直-交軸電流控制策略18   2.6 結語22 第三章 系統整合及功率控制23   3.1 前言23   3.2 昇壓型直流-直流功率轉換器之數學模式23   3.3 系統整合控制26   3.4 結語27 第四章 實體製作及結果29   4.1 前言29   4.2 硬體電路架構29     4.2.1 數位信號處理器及介面電路29     4.2.2 電壓回授電路31     4.2.3 電流回授電路33     4.2.4 過電流保護電路33     4.2.5 光纖模組35     4.2.6 智慧型功率模組電路36   4.3 控制軟體規劃38     4.3.1 主程式規劃38     4.3.2 市電側電壓角位置估測40     4.3.3 單相直流-交流功率轉換器之市電併網控制程式41     4.3.4 昇壓型直流-直流功率轉換器之控制程式44   4.4 模擬結果45   4.5 實測結果46   4.6 結語67 第五章 結論與建議68   5.1 結論68   5.2 建議69 參考文獻70 附錄A數位濾波器之設計及實現73 附錄B 系統規格及參數74 作者簡介75

    [1]陳振源,「未來的綠色能源-燃料電池」,科學發展第391期刊,第62-65頁,民國九十四年。
    [2]P. W. Lee, T. Z. Lee, B. T. Lin, “Power distribution System for Future Homes,” IEEE Power Electronics and Drive System, pp. 1140-1146, 1999.
    [3]N. Hatziargyriou and A. Zervos, “Wind Power Development in Europe”, IEEE Proceedings, vol. 12, pp. 1765-1782, 2001.
    [4]Y. Jang and M. M. Jovanovic, “Dynamic Modeling and Control of Wind Turbines for Grid-Connected wind Generation System”, IEEE PESC Conference Record, pp.1-6, 2006.
    [5]H. J. Beukes and J. H. R. Enslin, ”Analysis of A New Compound Converter as MPPT, Battery Regulator and Bus Regulator for Satellite Power System,” IEEE PESC Conference Record, pp. 846-852, 1993.
    [6]S. A Oliveira da Silva, R. Novochadlo and R. A. Modesto, “Single-phase PLL Structure Using Modified p-q Theory for Utility Connected Systems,” IEEE Power Electronics Specialists Conference, pp. 4706-4711, 2008.
    [7]S. K. Chung, “Phase-Locked Loop for Grid-Connected Three-Phase Power Converter Systems”, IEE Proceedings, Electronic Power Applications, vol. 147, pp. 213-219, 2000.
    [8]M. Ciobotaru, R. Teodorescu and F. Blaabjerg, “New Single-phase PLL Structure Based on Second Order Generalized Integrator,” Power Electronics Specialists Conference, 37th IEEE, pp. 1-6, 2006.
    [9]S. A. O. da Silva, E. Tomizaki, R. Novochadlo and E. A. A. Coelho, “PLL Structures for Utility Connected Systems Under Distorted Utility Conditions,” 32nd Annual Conference on, IEEE Industrial Electronics, pp. 2636-2641, 2006.
    [10]S. M. Silva, B. M. Lopes, B. J. C. Filho, R. P. Campana, W. C. Bosventura, “Performance Evaluation of PLL Algorithms for Single-phase Grid-connected Systems,” Industry Applications Conference, IEEE 39th IAS Annual Meeting. Conference Record, vol. 4, pp. 2259-2263, 2004.
    [11]L. N. Arruda, S. M. Silva and B. J. C. Filho, “PLL Structures for Utility Connected Systems,” Industry Applications Conference, IEEE 39th IAS Annual Meeting. Conference Record, vol. 4, pp. 2655-2660, 2001.
    [12]A. Ghoshal and Dr. V. John, “A Method to Improve PLL Performance Under Abnormal Grid Conditions,” National Power Electronics Conference, Dec. 2007, Bangalore.
    [13]M. Ciobotaru, R. Teodorescu and F. Blaabjerg, “Improved PLL Structures for Single-phase Grid Inverter,” Proceedings. of International Conference on Power Electronics and Intelligent Control for Energy Conservation, 2005.
    [14]林政達,“數位式市電並聯型換流器與快速鎖相迴路控制器之研製”,國立雲林科技大學電機研究所碩士論文,民國九十二年。
    [15]G. Hsieh and J. C. Hung, “Phase-locked Loop Techniques - A Survey,” IEEE Transaction on Industrial Electronics, vol.43, no.6, pp.609-615, 1996.
    [16]王國丞,“並聯三相不斷電系統研製”,國立台灣科技大學電機研究所碩士論文,民國九十五年。
    [17]黃世中,“市電並聯電力轉換系統之數位控制器的研製”,國立雲林科技大學電機研究所碩士論文,民國九十年。
    [18]陳明宏,“交流-直流-交流功率控制器於三相雙繞組永磁式同步風力發電機系統之應用”,國立台灣科技大學電機研究所博士論文,民國九十六年。
    [19]U. A. Miranda, M. Aredes and L. G. B. Rolim, “A DQ Synchronous Reference Frame Current Control for Single-phase Converters,” IEEE 36th Power Electronics Specialists Conference, pp. 1377-1381, 2005.
    [20]B. Saritha and P. A. Jankiraman, “Observer Based Current Control of Ssingle-phase Inverter in DQ Rotating Frame,” Power Electronics, Drives and Energy Systems, International, pp. 1-5, 2006.
    [21]PM300RLA060, INTELLIGENT POWER MODULES FLAT-BASE TYPE INSULATED PACKAGE, Mitsubishi ELECTRIC Co., 2005.

    [22]TOTX193, FIBER OPTIC TRANSMITTING MODULE, TOSHIBA Co., 2001.
    [23]TORX193, FIBER OPTIC RECEIVING MODULE, TOSHIBA Co., 2001.
    [24]TOCP172, OPTICAL FIBER WITH OPTIC CONNECTORS, TOSHIBA Co., 2001.
    [25]B. R. Lin and T. C. Wei, “A Novel NPC Inverter for Harmonics Elimination and Reactive Power Compensation,” IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 1449-1456, 2004.
    [26]楊久孟,“具虛功率補償功能之三相併聯型不斷電系統之研製”,國立台灣科技大學電機研究所碩士論文,民國九十四年。
    [27]H. Van Der Broeck, H. C. Skudelny and G.V. Stanke, “Analysis and Realization of A Pulse Width Modulator Base on Voltage Space Vectors,” IEEE Transactions on Industry Applications, vol. 24, No. 1, pp. 142-149, 1998.
    [28]何昆哲,“以數位訊號處理器為基礎之小型風力發電系統研製”,國立台灣科技大學電機研究所碩士論文,民國九十六年。
    [29]ezdspTM28335 Technical Reference Guide, Texas Instruments Co., 2007.
    [30]TMS320x28xxx Enhanced Pulse Width Modulator Module Reference Guide, Texas Instruments Co., 2007.
    [31]TMS320x2833x Analog-to-Digital Converter Module Reference Guide, Texas Instruments Co., 2007.
    [32]TMS320x2833x System Control and Interrupts Reference Guide, Texas Instruments Co., 2008.
    [33]康宗仁,“永磁式同步發電機之風力發電功率控制系統之研製”,國立台灣科技大學電機研究所碩士論文,民國九十四年。
    [34]黃煥巽,“並聯型全橋式直流-直流功率轉換器之研製”,國立台灣科技大學電機研究所碩士論文,民國九十七年。
    [35]Con3150-BG, SB Coaxial Connectors, MKT TAISEI Co., 2004.
    [36]LA100P Application Note, LEM Co.

    QR CODE