簡易檢索 / 詳目顯示

研究生: 楊久孟
Jiou-Meng Yang
論文名稱: 具虛功率補償功能之三相並聯型不斷電系統之研製
Development of Three-Phase Parallel Uninterruptible Power Supply Systems with the Function of Reactive Power Compensator
指導教授: 葉勝年
Sheng-Nian Yeh
口試委員: 羅有綱
none
黃仲欽
Chung-Chien Huang
潘晴財
none
李清元
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 85
中文關鍵詞: 不斷電系統主-僕式並聯虛功率補償
外文關鍵詞: uninterruptible power supply systems, compensating reactive power, master/slave control
相關次數: 點閱:411下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製三相並聯型不斷電系統。本系統為三相三臂式並聯架構,於市電正常供電下,依據負載瞬時功率之計算,產生三相功率補償器之電流命令,達到補償虛功率、降低電壓調整率並對蓄電池充電之功能;於市電中斷時,依據負載所需功率,經由直流截波器傳送蓄電池能量至直流鏈,並以主-僕式並聯之控制法則,分別將第一台與第二台功率轉換器操作為電壓控制模式與電流控制模式,其中第一台直流-交流功率轉換器以雙迴路控制,提供一穩定且低諧波失真之三相電壓源;而第二台直流-交流功率轉換器則採用電流控制法,依據不同負載狀況,提供非基本波之補償電流或分擔負載電流,以提高系統容量。蓄電池的能量管理方面,則採用昇/降壓型直流截波器作放電及充電之控制,放電時以定電壓控制,充電則採二段式定電流-定電壓方式。
    本文之系統以MATLAB/Simulink套裝軟體模擬,並以低價位且運算速度快之16位元數位信號處理器(DSP, TMS320LF2407A)為系統之控制核心,且回授電壓及電流,以軟體完成閉迴路控制,減少硬體電路。本系統已完成1380 W之線性負載並聯供電測試,其電壓諧波失真率為1.4 %;另外,於1030 W之非線性負載並聯供電測試下,其電壓諧波失真率為5.5 %;且於市電正常時,可對電感性負載(630 W, 640 VAR)進行功率補償,同時對蓄電池充電。藉由模擬與實測結果,驗證了本系統之可行性。


    This thesis is concerned with the implementation of three-phase parallel multi-functional uninterruptible power supply systems. The system consists of two three-phase three-leg parallel converters. When the AC mains is normal, the proposed system regulates its output current according to the AC load, and achieves compensating reactive power, reducing voltage regulation and charging battery. If the AC mains fails, the system will supply the battery power to the load with master/slave control. The first dc-to-ac power converter with double control loops provides stable AC voltage source with low harmonic distortion, whereas the second converter operates under current-controlled mode to provide harmonic compensation current or share load current based on different loads to improve system capacity. As to the management of batteries, the charging/discharging schemes are fulfilled by a boost/buck DC chopper.
    The performance of the system is first simulated with MATLAB/Simulink. The control scheme of the system is implemented by a 16-bit digital signal processor (DSP, TMS320LF2407A) to reduce the hardware components. The experimental results for 1380 W linear resitive load and 1030 W nonlinear load show that the total harmonic distortions of output voltage are 1.4 % and 5.5 %, respectively. Besides, the proposed system can yield power compensation for the inductive load of 630 W and 640 VAR under normal utility operation. Experimental and simulated data are given to justify the analysis.

    中文摘要 ………………………………………………………. I 英文摘要 ………………………………………………………. II 誌 謝 ………………………………………………………. III 目 錄 ………………………………………………………. IV 符號索引 ………………………………………………………. VI 圖表索引 ………………………………………………………. X 第一章 緒論…………………………………………………. 1 1.1 前言…………………………………………………. 1 1.2 目的及系統架構……………………………………. 4 1.3 本文大綱……………………………………………. 6 第二章 三相直流-交流功率轉換器之分析及控制………… 8 2.1 前言…………………………………………………. 8 2.2 變流器開關切換之動作原理………………………. 9 2.3 電壓控制模式功率轉換器之分析與其等效電路…. 11 2.3.1 同步旋轉座標系統下之電壓控制模式功率轉換器. 14 2.3.2 電壓控制模式功率轉換器之控制…………………. 17 2.4 電流控制模式功率轉換器之分析與其等效電路…. 20 2.4.1 電流控制模式功率轉換器之控制…………………. 21 2.5 結語…………………………………………………. 24 第三章 儲能系統之分析與控制……………………………. 25 3.1 前言…………………………………………………. 25 3.2 蓄電池特性分析……………………………………. 25 3.3 昇降壓型直流截波器之分析………………………. 27 3.3.1 降壓式直流截波器控制分析………………………. 28 3.3.2 昇壓式直流截波器控制分析………………………. 31 3.4 結語…………………………………………………. 33 第四章 功率分配及補償……………………………………. 34 4.1 前言…………………………………………………. 34 4.2 瞬時功率之計算……………………………………. 34 4.3 三相功率補償器之分析與其等效電路……………. 37 4.3.1 三相功率補償器之控制……………………………. 38 4.3.2 功率補償之控制……………………………………. 41 4.4 結語…………………………………………………. 43 第五章 實體製作及測試……………………………………. 44 5.1 前言…………………………………………………. 44 5.2 實體製作……………………………………………. 44 5.2.1 數位信號處理器之介面電路………………………. 44 5.2.2 電壓回授電路………………………………………. 46 5.2.3 電流回授電路………………………………………. 46 5.2.4 市電側電壓同步角位置偵測電路…………………. 47 5.2.5 智慧型電力模組及其驅動電路……………………. 48 5.3 軟體規劃……………………………………………. 49 5.3.1 主程式流程圖………………………………………. 49 5.3.2 功率補償器之軟體規劃……………………………. 51 5.3.3 電壓模式功率轉換器之軟體規劃…………………. 53 5.3.4 電流模式功率轉換器之軟體規劃…………………. 55 5.3.5 蓄電池控制之軟體規劃……………………………. 56 5.4 模擬與實測…………………………………………. 60 5.4.1 模擬結果……………………………………………. 61 5.4.2 實測結果……………………………………………. 66 5.5 結語…………………………………………………. 75 第六章 結論與建議…………………………………………. 76 6.1 結論…………………………………………………. 76 6.2 建議…………………………………………………. 78 參考文獻………………………………………………………79 附錄A系統規格表………………………………………………… 83 附錄B電壓總諧波失真率定義…………………….……………84 作者簡介……………………………………………………………85

    [1] S. A. Oliveira Da Silva, P. Donoso-Garcia, P. C. Cortizo and P. F. Seixas, “A three-phase line-interactive UPS system implementation with series-parallel active power-line conditioning capabilities,” Proceedings of IEEE Industry Applications Annual Conference, vol. 4, pp. 2389-2396, 2001.
    [2] S. A. Oliveira Da Silva, P. Donoso-Garcia and P. C. Cortizo, “Three-phase series-parallel compensated line-interactive UPS system with sinusoidal input current and sinusoidal output voltage,” Proceedings of IEEE Industry Applications Annual Conference, vol. 2, pp. 826-832, 1999.
    [3] K. Dai, P. G. Liu, G. X. Wang, Y. Kang and J. Chen, “Novel control techniques for three-phase three-wire series-parallel compensated line-interactive UPS system,” IEEE 2003 29th Annual Conference of Industrial Electronics Society, vol. 1, pp. 770-775, 2003.
    [4] A. D. le Roux and H. D. T. Mouton, “A series-shunt compensator with combined UPS operation,” Proceedings of IEEE International Symposium on Industrial Electronics, vol. 3, pp. 2038-2043, 2001.
    [5] R. Morrison and M. G. Egan, “A new power-factor-corrected single-transformer UPS design,” IEEE Transactions on Industry Applications, vol. 36, pp. 171-179, 2000.
    [6] F. Kamran and T. G. Habetler, “A novel on-line UPS with universal filtering capabilities,” IEEE Transactions on Power Electronics, vol. 13, pp. 410-418, 1998.
    [7] T. J. Liang, J. L. Shyu and J. F. Chen, “High real output power on-line UPS system with built-in reactive power compensation,” Power Electronics Specialists Conference, vol. 3, pp. 1555-1560, 2001.
    [8] H. L. Jou, J. C. Wu, C. Tsai, K. D. Wu and M. S. Huang, “Novel line-interactive uninterruptible power supply,” IEEE Electric Power Applications, vol. 151, pp. 359-364, 2004.
    [9] Y. Qin and S. Du, “Line interactive UPS with the DSP based active power filter,” Telecommunications Energy Conference, pp. 421-425, 1995.
    [10] T. Kawabata, N. Sahida and Y. Yamamoto, “Parallel processing inverter system,” IEEE Transactions on Power Electronics, vol. 6, pp. 442-450, 1991.
    [11] J. M. Guerrero, L. G. de Vicuna, J. Matas, J. Miret and M. Castilla, “A wireless controller for parallel inverters in distributed online UPS systems,” IEEE 2003. 29th Annual Conference of Industrial Electronics Society, vol. 2, pp. 1637-1642, 2003.
    [12] W. C. Lee, T. K. Lee, S. H. Lee, K. H. Kim, D. S. Hyun and I. Y. Suh, “A master and slave control strategy for parallel operation of three-phase UPS systems with different ratings,” IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 456-462, 2004.
    [13] J. F Chen, C. L. Chu and Y. C. Lieu, “Modular parallel three-phase inverter system,” Proceedings of IEEE International Symposium on Power Electronics, vol. 1, pp. 237-242, 1995.
    [14] J. F. Chen, C. L. Chu and C. L. Huang, “Combination voltage-controlled and current-controlled PWM inverters for parallel operation of UPS,” Proceedings of IEEE International Symposium on Power Electronics, vol. 2 of 3, pp. 1111-1116, 1993.
    [15] W. C. Lee, S. H. Lee, K. H. Kim and D. S. Hyun, “Novel control strategy for parallel operation of UPS system,” IEEE Power Electronics and Motion Control Conference, vol. 2 , pp. 983-988, 2004.
    [16] A. P. Martins, A. S. Carvalho and A. S. Araujo, “Design and implementation of a current controller for the parallel operation of standard UPSs,” Proceedings of the 1995 IEEE IECON 21st International Conference, pp. 584-589, 1995.
    [17] S. Tamai and M. Kinoshita, “Parallel operation of digital controlled UPS system,” International Conference on Industrial Electronics, pp. 326-331, 1991.
    [18] Y. Liu, Y. Xing, L. Huang and K. Hirachi, “A novel distributed control scheme for the parallel operation of digital controlled UPS,” IEEE 2003. 29th Annual Conference of Industrial Electronics Society, vol.1, pp. 668-672, 2003.
    [19] V. D. Broeck and U. H. Boeke, “A simple method for parallel operation of inverters,” Telecommunications Energy Conference, pp. 227-231, 1998.
    [20] 陳仁傑, “三相並聯型直流-交流功率轉換器之研製,” 國立台灣科技大學電機工程研究所碩士論文, 民國九十二年六月。
    [21] 蘇育生, “以數位訊號處理器為基礎之並聯型單相全橋不斷電系統之研製,” 國立台灣科技大學電機工程研究所碩士論文, 民國九十三年六月。
    [22] 池欣慶, “單相半橋式功率雙向型不斷電系統之研製,” 國立台灣科技大學電機工程所碩士論文, 民國八十七年六月。
    [23] R. O. Caceres, W. M. Garcia and O. E. Camacho, “A buck-boost DC-AC converter: operation, analysis, and control,” IEEE Power Electronics Congress, pp. 126-131, 1998.
    [24] N. Mohan, T. M. Undeland and W. P. Robbins, “Power electronics: converters, applications and design,” 2nd , Wiley, 1995.
    [25] TMS320LF/LC240xA DSP controllers, reference guide, system, and peripherals, 2001.
    [26] J. Reed and N. Sharma, “Large parallel UPS system utilizing PWM technology,” Telecommunications Energy Conference, pp. 282-289, 1984.
    [27] Y. Y. Tzou, “DSP-based fully digital control of a PWM DC-AC converter for AC voltage regulation,” Power Electronics Specialists Conference, vol. 1, pp. 138-144, 1995.
    [28] MITSUBISHI ELECTRIC, PM30CSJ060 User Manual, 2000.
    [29] D. A. Paice, “Power electronic converter harmonics: multipulse methods,” IEEE Industry Application Society, 1995.
    [30] M. J. Ryan and R. D. Lorenz, “A high performance sine wave inverter controller with capacitor current feedback and “back-EMF” decoupling,” IEEE Transactions on Industry Applications, pp. 507-513, 1995.
    [31] N. M. Abdel-Rahim and J. E. Quaicoe, “Analysis and design of a multiple feedback loop control strategy for single-phase voltage-source UPS inverters,” IEEE Transactions on Power Electronics, vol. 11, pp. 523-541, 1996.
    [32] S. L. Jung, H. S. Huang, M. Y. Chang and Y. Y. Tzou, “DSP-based multiple-loop control strategy for single-phase inverters used in AC power sources,” Power Electronics Specialists Conference, vol. 1, pp. 706-712, 1997.
    [33] C. T. Rim, N. S. Choi, G. C. Cho and G. H. Cho, “A complete DC and AC analysis of three-phase controlled-current PWM rectifier using Ccrcuit d-q transformation,” IEEE Transactions on Power Electronics, vol. 9, pp. 390-396, 1994.
    [34] CSB Co, Technical Manual, pp. 6-9 & pp. 16-20.
    [35] 呂文隆, “單相半橋多功能不斷電系統之研製,” 國立台灣科技大學電機工程研究所博士論文, 民國89年六月。
    [36] 葉勝年, “高性能不斷電系統之研製,” 國科會研究報告, 民國84年。
    [37] 謝錫濱, “具主動式濾波器功能之單向半橋式不斷電系統分析與製作,”國立台灣科技大學電機工程研究所碩士論文, 民國八十八年六月。
    [38] 吳立成, “三相主動式電力濾波器之研製,”國立台灣科技大學電機工程研究所碩士論文, 民國八十八年六月。
    [39] G. J. Seung and M. H. Woo, “DSP-based active power filter with predictive current control,” IEEE Transactions on Industry Applications, vol. 31, pp. 645-650, 1995.
    [40] 葉勝年, “多功能功率補償之蓄電池儲能系統研製,” 國科會研究報告, 民國83年。
    [41] S. A. Oliveira Da Silva, P. Donoso-Garcia, P. C. Cortizo and P. F. Seixas, “Performance analysis of three-phase line-interactive UPS system with active power-line conditioning,” IEEE 2003. 29th Annual Conference of Industrial Electronics Society, vol. 1, pp. 353-360, 2003.
    [42] F. Barrero, S. Martinez, F. Yeves and P. M. Martinez, “Active power filters for line conditioning: a critical evaluation,” IEEE Transactions on Power Electronics, vol. 15, pp. 319-325, 2000.

    QR CODE