簡易檢索 / 詳目顯示

研究生: 李怡親
Yi-Chin Li
論文名稱: 承載鈷鎳氧化物碳微管指叉電極的平面超高電容器
Planar ultracapacitor of interdigital electrodes loaded with (CoNi)Ox and carbon nanotubes
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 戴 龑
Yian Tai
傅彥培
Yen-Pei Fu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 135
中文關鍵詞: 平面超高電容器鈷鎳氧化物碳微管指叉式電極對稱式電極非對稱式電
外文關鍵詞: Ultracapacitor, Cobalt-nickel oxides, Carbon nanotubes, Interdigitated electrode, Symmetric electrode, Asymmetric electrode
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
本期研究以發展微型化之平面超高電容器為主軸,黃光微影技術製作圖案化指叉式電極,並以化學氣相沉積法(CVD)成長碳微管(CNT)及電化學電鍍擬電容材料NiCo2O4。利用循環伏安法(CV),交流阻抗,及充/放電分析平面超高電容器的性能,影響電容器性能表現最重要的因素為鑑別電極配置上是否為對稱式或非對稱式,次要因素為底電極之阻抗,我們利用添加金薄膜層於成長碳微管之鋁-鐵觸媒層下做改善。
在研究圖案化指叉式電極前,我們先成長碳微管於無圖案化平板式電極,再電鍍鈷鎳氧化物,之後鑑定其為微晶NiCo2O4。選擇電解液0.1 M KOH + 0.09 M Na2SO4,因其具有高導電度及適合的pH值,由於擬電容材料NiCo2O4於酸性溶液下會慢慢剝蝕,故使用之電解質必須為鹼性。
添加金於鋁-鐵觸媒層後,成長之碳微管結構會受到損壞,因為濺鍍的金會干擾微粒子影響碳微管的成長方向。在底電極無金電容器(Fe-Al/SiO2/Si)能得到垂直陣列碳微管,有好的高度20~30 μm,與高的密度>109 cm2,底電極添加金後,電極阻抗有所改善,卻也使碳微管隨機成長,高度只有1~2 μm,且降低密度。因此,循環伏安10 mVs-1掃描下,底層無金對稱式CNT + NiCo2O4電容器的比電容值得到199 mFcm-2,底層有金對稱式CNT + NiCo2O4電容器的比電容值為109 mFcm-2。但隨著增加掃描速率,無金電極比有金電極所得之電容值損失更為快速,快速下降的趨勢,是歸因於較大的電極阻抗所造成。由交流阻抗分析中,底電極無金對稱式電容器得到電阻值4167 Ω,比有金的電容器333 Ω來的高。
以儲存能量對輸出功率做Ragone圖,可見對稱式與非對稱式電極皆有彎勾型的曲線。無論底電極有、無金,皆以非對稱式電容器擁有較高之儲存能量及輸出功率。底電極無金非對稱式 CNT + NiCo2O4電容器有能量密度9170 μJ與輸出功率119 μW,底電極有金非對稱式 CNT + NiCo2O4電容器得到的儲存能量為756 μJ與輸出功率94 μW。
關鍵字:平面超高電容器、鈷鎳氧化物、碳微管、指叉式電極、對稱式電極、非對稱式電極。


ABSTRACT
In the present study, we develop the ultracapacitor cells of miniature size, which are prepared with photolithography, chemical vapor deposition of carbon nanotubes (CNT), and electrochemical deposition of pseudocapacitive NiCo2O4. The performance of the ultracapacitors is analyzed by cyclic voltammetry (CV), impedance, and charge-discharge experiments. The most important factor of capacitor performance is identified as whether the electrode configuration is symmetric or asymmetric. The second important factor is the resistance of bottom electrode, manipulated with the addition of gold in the Al-Fe seed layer for CNT growth.
Before the investigation of patterned cell of interdigital electrodes, we synthesize CNT forest with blanket growth and electrodeposit the oxide of nickel and cobalt oxide, which is later identified as microcrystalline NiCo2O4. The electrolyte of 0.1 M KOH and 0.09 M Na2SO4 is chosen for its high conductivity and pH value. The alkaline electrolyte is necessary for pseudocapacitive NiCo2O4, which slowly degrades in acidic solution.
The structure of CNT is damaged with the addition of gold in the Al-Fe seed layer, since the sputtered gold interferes with the guided growth of CNT. Without gold, the CNT demonstrates vertical aligned growth with an impressive height of 20-30 m, along with a high population density > 109 cm-2. With the addition of gold, the improvement on electrode resistance is accompanied with a small CNT height 1-2 m, randomly orientation, and a low population density. Thus, the electrode capacitance of symmetric CNT + NiCo2O4 cell on the Al-Fe layer, measured by CV, is 199 mFcm-2, while that of symmetric CNT + NiCo2O4 cell on the Al-Fe-Au layer 109 mFcm-2 at 10 mVs-1. But the capacitance of the electrode without Au decreases more rapidly with increasing sweep rate, compared with the electrode with Au. The more rapid decreasing trend is attributed to the larger electrode resistance, for the electrode without Au, the resistance is measured 4167  by impedance spectroscopy, higher than that of the electrode with Au 333 .
Ragone plots of power versus energy for the symmetric and asymmetric cells show the typical hooked-shape curve. Built on either Al-Fe or Al-Fe-Au bottom electrodes, the asymmetric cell exhibits the highest energy and power capability. On the Al-Fe bottom electrode, the asymmetric electrode of CNT + NiCo2O4 cell displays an energy capacity of 9170 J and a power level of 119 W. On the Al-Fe-Au bottom electrode, the asymmetric electrode of CNT + NiCo2O4 cell exhibits an energy capacity of 756 J, and a power level of 94 W.
Keywords:Ultracapacitor; Cobalt-nickel oxides; Carbon nanotubes; Interdigitated electrode; Symmetric electrode; Asymmetric electrode.

目錄 摘要 I ABSTRACT III 目錄 V 圖目錄 X 表目錄 XV 第一章 緒論 1 1.1前言 1 1.2研究動機 2 第二章 文獻回顧與理論基礎 4 2.1儲能元件簡介 4 2.2電容元件簡介 7 2.2.1電化學電容器 7 2.2.2電化學電容器工作原理 10 2.2.3電化學電容器之電極材料 14 2.2.3.1金屬氧化物電極種類與製備 19 2.2.3.2鎳、鈷氧化物於電化學電容器之研究與應用 21 2.2.4電化學電容器電解液種類及影響 25 2.2.5電化學電容器的測定 27 2.2.6影響電化學電容器特性的因素 28 2.2.7指叉式電極 30 2.3奈米碳管簡介 31 2.3.1奈米碳管的生長機制 31 2.3.2奈米碳管的應用 32 2.4電化學交流阻抗分析基本原理 33 2.4.1電化學交流阻抗理論 33 2.4.2常見電容器電極之等效電路模擬 35 2.4.2.1電容電阻串聯的電容器 36 2.4.2.2電容電阻並聯的電容器 37 2.4.2.3電容電阻並聯含質傳效應之電容器 37 2.4.2.4電化學電容器 39 第三章 實驗方法及步驟 40 3.1實驗藥品耗材與儀器設備 40 3.1.1實驗藥品耗材與儀器設備 40 3.1.2分析儀器 46 3.2實驗流程 47 3.3實驗方法 48 3.3.1基材清洗與準備工作 48 3.3.2微影/蝕刻製程(Photolithography) 48 3.3.3濺鍍鈦(Ti)金屬層 49 3.3.4濺鍍金(Au)金屬層 50 3.3.5沉積鐵-鋁(Fe-Al)奈米碳管觸媒層 50 3.3.6去除光阻劑 51 3.3.7成長奈米碳管(Carbon nanotube) 51 3.3.8試片封裝 52 3.3.9電化學電鍍(CoNi)Ox 52 3.4電極材料鑑定與分析 54 3.4.1電化學特性分析 54 3.4.2 X-ray繞射分析(XRD) 55 3.4.3掃描式電子顯微鏡分析(SEM) 56 3.4.4能量散佈儀元素分析(EDX) 57 第四章 結果與討論 58 4.1電極材料定性分析 58 4.1.1電極表面型態觀察 58 4.1.1.1平板式電極成長碳微管之SEM圖 58 4.1.1.2指叉式圖案化的碳微管之SEM圖 60 4.1.1.3電鍍鈷鎳氧化物於垂直陣列碳微管上之SEM圖 63 4.1.1.4底電極添加金碳微管與電鍍鈷鎳氧化物之影像 64 4.1.2 NiCo2O4之晶相鑑定 67 4.1.3 NiCo2O4之EDS分析 69 4.1.4電鍍NiCo2O4於碳微管上之TEM觀察 69 4.2平板式電極電容器電性分析 71 4.2.1不同電解液中循環伏安行為 71 4.2.2不同電解液中電化學阻抗分析 77 4.2.3不同電解液中穩定性測試 78 4.3指叉式電極電容器電性分析 80 4.3.1底電極無添加金的容器電性分析 81 4.3.1.1循環伏安行為與阻抗分析 81 4.3.1.2充/放電測試 86 4.3.1.3電化學計算分析 89 4.3.2底電極添加金的電容器電性分析 93 4.3.2.1循環伏安行為與阻抗分析 93 4.3.2.2充/放電測試 97 4.3.2.3電化學計算分析 100 4.3.3底電極有、無添加金的電容器電性比較 103 4.3.3.1循環伏安行為與阻抗分析 103 4.3.3.2充/放電測試 106 4.3.3.3電化學計算分析 107 第五章 結論 109 參考文獻 113 附錄 118 圖目錄 圖2- 1各種能量儲存及轉換裝置的功率密度及能量密度特性示意圖。[1] 6 圖2- 2電雙層電容器示意圖。[14] 12 圖2- 3電位變化示意圖。[15] 12 圖2- 4電極材料的電化學反應示意圖。[19] 13 圖2- 5第一次與第二次循環伏安掃描結果比較圖。[39] 23 圖2- 6鈷之氫氧化物材料用於正電極之溫度與比電容值關係圖。[39] 23 圖2- 7鈷之氫氧化物材料用於負電極之溫度與比電容值關係圖。[39] 23 圖2- 8在不同電解液濃度下量測鈷鎳氧化物之CV行為。[56] 27 圖2- 9指叉式電極配合aligned CNT之電容器圖示。[59] 30 圖2- 10多壁奈米碳管的成長模擬。[61] 32 圖2- 11阻抗函數表示複數平面圖。 35 圖2- 12(a)介電質電容器的等效電路圖 (b) Nyquist plot。 36 圖2- 13(a)等效電路圖包含電容電阻並聯 (b) Nyquist plot。 37 圖2- 14(a)電容電阻並聯含質傳效應之電容器的等效電路圖 (b) Nyquist plot。 38 圖2- 15電化學電容器的等效電路圖(a)有擴散效應(b)高頻時可忽略擴散效應。 39 圖3- 1Photolithography。 41 圖3- 2反應式濺鍍設備。 41 圖3- 3反應式濺鍍示意圖。 42 圖3- 4鍍金機。 42 圖3- 5E-beam evaporator system設備。 43 圖3- 6E-beam evaporator system示意圖。 43 圖3- 7水平式長管爐。 44 圖3- 8實驗流程圖。 47 圖3- 9微影/蝕刻製程(Photolithography) 。 49 圖3- 10沉積金屬/觸媒層示意圖。 50 圖3- 11去光阻、成長奈米碳管以及電鍍示意圖。 51 圖3- 12試片封裝流程圖。 52 圖3- 13電化學電鍍裝置示意圖。 54 圖3- 14電化學量測裝置示意圖。 55 圖3- 15XRD holder for Blanket sample。 56 圖4- 1平板式電極成長碳微管之SEM圖(a)低倍率截面圖 (b)高倍率截面圖 (c)俯視圖。 60 圖4- 2指叉式電極成長碳微管之SEM圖(a)低倍率截面圖 (b)高倍率截面圖 (c)俯視圖 (d)3D圖。 62 圖4- 3指叉式電極成長30分鐘後匍倒碳微管之SEM圖(a)低倍率俯視圖 (b)高倍率俯視圖。 62 圖4- 4電鍍鈷鎳氧化物於垂直陣列碳微管上之SEM圖(a)低倍率截面圖 (b)中倍率截面圖 (c)高倍率截面圖。 64 圖4- 5增加指叉式電極導電度後成長碳微管與電鍍鈷鎳氧化物後之SEM圖(a)俯視圖 (b)截面圖 (c)電鍍鈷鎳氧化物後之3D圖。 66 圖4- 6NiCo2O4之XRD繞射圖譜。 68 圖4- 7以不同倍率觀察電鍍NiCo2O4於碳微管上之TEM圖。 70 圖4- 8碳微管於不同電解液中之循環伏安圖。(a) 0.1 M KOH + 0.09 M Na2SO4;(b)0.1 M KOH + 0.9 M Na2SO4。 74 圖4- 9CNT + NiCo2O4於不同電解液中之循環伏安圖。(a) 0.1 M KOH + 0.09 M Na2SO4;(b)0.1 M KOH + 0.9 M Na2SO4。 75 圖4- 10CNT + NiCo2O4在不同電解液中量測之阻抗圖。 77 圖4- 11碳微管與NiCo2O4於不同電解液中之穩定性測試。 79 圖4- 12指叉式底電極無金電容器分別以掃描速率10、50、200、500 mVs-1所得之循環伏安行為;(a)對稱-碳微管工作電極,碳微管對應電極;(b)對稱-CNT + NiCo2O4工作電極,CNT + NiCo2O4對應電極;(c)非對稱-碳微管工作電極,CNT + NiCo2O4對應電極;(d)非對稱- CNT + NiCo2O4工作電極,碳微管對應電極。 84 圖4- 13指叉式底電極無金電容器之阻抗圖;(a)對稱式電極;(b) 非對稱式電極。 85 圖4- 14指叉式底電極無金電容器放電曲線圖;(a)對稱-碳微管工作電極,碳微管對應電極;(b)對稱-CNT + NiCo2O4工作電極,CNT + NiCo2O4對應電極;(c)非對稱-碳微管工作電極,CNT + NiCo2O4對應電極;(d)非對稱- CNT + NiCo2O4工作電極,碳微管對應電極。 88 圖4- 15指叉式底電極無金電容器輸出功率對放電電流作圖;(a)對稱-碳微管工作電極,碳微管對應電極;(b)對稱-CNT + NiCo2O4工作電極,CNT + NiCo2O4對應電極;(c)非對稱-碳微管工作電極,CNT + NiCo2O4對應電極;(d)非對稱- CNT + NiCo2O4工作電極,碳微管對應電極。 91 圖4- 16指叉式底電極無金電容器之Ragone圖。 92 圖4- 17指叉式底電極有金電容器分別以掃描速率10、50、200、500 mVs-1所得之循環伏安行為;(a)對稱-碳微管工作電極,碳微管對應電極;(b)對稱-CNT + NiCo2O4工作電極,CNT + NiCo2O4對應電極;(c)非對稱-碳微管工作電極,CNT + NiCo2O4對應電極;(d)非對稱- CNT + NiCo2O4工作電極,碳微管對應電極。 95 圖4- 18指叉式底電極有金電容器之阻抗圖;(a)對稱式電極;(b) 非對稱式電極。 96 圖4- 19指叉式底電極有金電容器放電曲線圖;(a)對稱-碳微管工作電極,碳微管對應電極;(b)對稱-CNT + NiCo2O4工作電極,CNT + NiCo2O4對應電極;(c)非對稱-碳微管工作電極,CNT + NiCo2O4對應電極;(d)非對稱- CNT + NiCo2O4工作電極,碳微管對應電極。 99 圖4- 20指叉式底電極有金電容器輸出功率對放電電流作圖;(a)對稱-碳微管工作電極,碳微管對應電極;(b)對稱-CNT + NiCo2O4工作電極,CNT + NiCo2O4對應電極;(c)非對稱-碳微管工作電極,CNT + NiCo2O4對應電極;(d)非對稱- CNT + NiCo2O4工作電極,碳微管對應電極。 101 圖4- 21指叉式底電極有金電容器之Ragone圖。 102 圖4- 22電鍍NiCo2O4於指叉對稱式電容器分別以掃描速率10、50、200、500 mVs-1所得之循環伏安行為;(a)底電極無金;(b)底電極有金。 105 圖4- 23電鍍NiCo2O4於指叉對稱式電容器之阻抗圖 105 圖4- 24電鍍NiCo2O4於指叉對稱式電容器放電曲線圖;(a)底電極無金;(b)底電極有金。 106 圖4- 25電鍍NiCo2O4於指叉對稱式電容器輸出功率對放電電流作圖;(a)底電極無金;(b)底電極有金。 107 圖4- 26電鍍NiCo2O4於指叉對稱式電容器之Ragone圖 108 表目錄 表2- 1電化學電容器與電池的特性比較。[12] 9 表2- 2常用做為電極材料的金屬氧化物。[12] 17 表2- 3各種不同金屬氧化物及複合電極材料之文獻電容值比較。[24] 18 表2- 4各種利用鈷與鎳的氧化物作為電極材料之文獻電容值比較。 24 表3- 1濺鍍TI條件 49 表3- 2濺鍍AU的條件 50 表3- 3奈米碳管的成長條件 51 表4- 1NICO2O4原子比例及EDS組成分析表。 69 表4- 2碳微管於不同電解液中,以循環伏安法量測之比電容值計算結果表。 76 表4- 3CNT + NICO2O4於不同電解液中,以循環伏安法量測之比電容值計算結果表。 76 表4- 4指叉式底電極無金電容器對稱與非對稱比電容值比較表。 85 表4- 5指叉式底電極無金電容器於不同放電電流下所測得最大儲存能量及最大輸出功率值。 92 表4- 6指叉式底電極有金電容器對稱與非對稱比電容值比較表。 96 表4- 7指叉式底電極有金電容器於不同放電電流下所測得最大儲存能量及最大輸出功率值。 102 表4- 8電鍍NICO2O4於指叉對稱式電容器儲存能量及輸出功率值。 108

1. Kotz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 45(15-16): p. 2483-2498.
2. Pillay, B. and J. Newman, The Influence of Side Reactions on the Performance of Electrochemical Double-Layer Capacitors. Journal of The Electrochemical Society, 1996. 143(6): p. 1806-1814.
3. Zheng, J.P., P.J. Cygan, and T.R. Jow, Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. Journal of The Electrochemical Society, 1995. 142(8): p. 2699-2703.
4. Zheng, J.P. and T.R. Jow, A New Charge Storage Mechanism for Electrochemical Capacitors. Journal of The Electrochemical Society, 1995. 142(1): p. L6-L8.
5. Zheng, J.P. and T.R. Jow, High energy and high power density electrochemical capacitors. Journal of Power Sources, 1996. 62(2): p. 155-159.
6. Kim, I.-H. and K.-B. Kim, Ruthenium Oxide Thin Film Electrodes for Supercapacitors. Electrochemical and Solid-State Letters, 2001. 4(5): p. A62-A64.
7. Tsai, W.-T., M.-T. Lee, and J.-K. Chang, Effect of Iron Doping on the Pseudo-Capacitive Characteristics of Manganese Oxide. ECS Meeting Abstracts, 2006. 501(3): p. 122-122.
8. Chang, J.K., et al., Physicochemical properties and electrochemical behavior of binary manganese-cobalt oxide electrodes for supercapacitor applications. Materials Chemistry and Physics, 2008. 108(1): p. 124-131.
9. Rajendra Prasad, K. and N. Miura, Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochemistry Communications, 2004. 6(10): p. 1004-1008.
10. Burke, A., Ultracapacitors: why, how, and where is the technology. Journal of Power Sources, 2000. 91(1): p. 37-50.
11. Conway, B.E., Transition from ``Supercapacitor'' to ``Battery'' Behavior in Electrochemical Energy Storage. Journal of The Electrochemical Society, 1991. 138(6): p. 1539-1548.
12. 劉俊興, 氧化錳系超電容之研究. 大同大學碩士論文, 2006.
13. Mastragostino, M., C. Arbizzani, and F. Soavi, Polymer-based supercapacitors. Journal of Power Sources, 2001. 97-98: p. 812-815.
14. 王世育, 四氧化三鐵/碳材超高電容器之特性與機制探討. 國立台灣大學化學工程學研究所博士論文, 2004.
15. 陳怡倫, 以陽極沉積法製備之氧化錳電極的材料特性與擬電容性質. 國立成功大學材料科學及工程學系碩士論文, 2004.
16. Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Kluwer Academic,New York, 1999.
17. I. Tanahashi, A.Y., A. Nishino, Preparation and Characterization of Activated Carbon Tablets for Electric Double Layer Capacitors. Chem. Soc. Jpn., 1990. 63: p. 2755-2758.
18. Weng, T.C. and H.S. Teng, Characterization of high porosity carbon electrodes derived from mesophase pitch for electric double-layer capacitors. Journal of The Electrochemical Society, 2001. 148(4): p. A368-A373.
19. Portet, C., et al., Influence of carbon nanotubes addition on carbon-carbon supercapacitor performances in organic electrolyte. Journal of Power Sources, 2005. 139(1-2): p. 371-378.
20. 張仍奎, 超高電容器錳氧化物電極之電化學製備法、材料特性及擬電容行為. 國立成功大學博士論文, 2005.
21. Arbizzani, C., M. Mastragostino, and F. Soavi, New trends in electrochemical supercapacitors. Journal of Power Sources, 2001. 100(1-2): p. 164-170.
22. Gamby, J., et al., Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources, 2001. 101(1): p. 109-116.
23. Kim, C., Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors. Journal of Power Sources, 2005. 142(1-2): p. 382-388.
24. 高維欣, 電化學方法製備釕氧化物電極與其特性之探討. 國立高雄應用科技大學化學工程系, 2004.
25. Mayer, S.T., R.W. Pekala, and J.L. Kaschmitter, The Aerocapacitor: An Electrochemical Double-Layer Energy-Storage Device. Journal of The Electrochemical Society, 1993. 140(2): p. 446-451.
26. Niu, C., et al., High power electrochemical capacitors based on carbon nanotube electrodes. Applied Physics Letters, 1997. 70(11): p. 1480-1482.
27. Lin, C., J.A. Ritter, and B.N. Popov, Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors. Journal of The Electrochemical Society, 1998. 145(12): p. 4097-4103.
28. Lee, H.Y. and J.B. Goodenough, Supercapacitor behavior with KCl electrolyte. Journal of Solid State Chemistry, 1999. 144(1): p. 220-223.
29. 陳奕勳,胡啟章, 循環伏安法製備錳-鎳氧化物於電化學電容器的應用. 2002年材料年會論文, 2002.
30. Pang, S.C., M.A. Anderson, and T.W. Chapman, Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. Journal of The Electrochemical Society, 2000. 147(2): p. 444-450.
31. 張仍奎,蔡文達, 含水氧化錳電極之製備與擬電容特性之研究. 2002年材料年會論文, 2002.
32. Jeong, Y.U. and A. Manthiram, Amorphous ruthenium-chromium oxides for electrochemical capacitors. Electrochemical and Solid State Letters, 2000. 3(5): p. 205-208.
33. Wilde, P.M., et al., Strontium ruthenate perovskite as the active material for supercapacitors. Journal of Electroanalytical Chemistry, 1999. 461(1-2): p. 154-160.
34. 胡啟章,江鴻儒, 循環伏安法及電鍍法製備釕電極在電化學電容器的應用. 國立中正大學化學工程學系碩士論文, 2000.
35. Liu, K.-C. and M.A. Anderson, Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors. Journal of The Electrochemical Society, 1996. 143(1): p. 124-130.
36. Lee, H.Y. and J.B. Goodenough, Ideal supercapacitor behavior of amorphous V2O5 center dot nH(2)O in potassium chloride (KCl) aqueous solution. Journal of Solid State Chemistry, 1999. 148(1): p. 81-84.
37. Takasu, Y., et al., Dip-Coated Ru-V Oxide Electrodes for Electrochemical Capacitors. Journal of The Electrochemical Society, 1997. 144(8): p. 2601-2606.
38. Pang, S.-C., M.A. Anderson, and T.W. Chapman, Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide. Journal of The Electrochemical Society, 2000. 147(2): p. 444-450.
39. Srinivasan, V. and J.W. Weidner, Capacitance studies of cobalt oxide films formed via electrochemical precipitation. Journal of Power Sources, 2002. 108(1-2): p. 15-20.
40. Wohlfahrt-Mehrens, M., et al., New materials for supercapacitors. Journal of Power Sources, 2002. 105(2): p. 182-188.
41. Cao, L., M. Lu, and H.-L. Li, Preparation of Mesoporous Nanocrystalline Co[sub 3]O[sub 4] and Its Applicability of Porosity to the Formation of Electrochemical Capacitance. Journal of The Electrochemical Society, 2005. 152(5): p. A871-A875.
42. Simpraga, R.P., Reversibility and irreversibility in the formation and reduction of oxide film states on Co at ambient and low temperatures. Journal of Electroanalytical Chemistry, 1993. 355(1-2): p. 79-96.
43. Tseung, A.C.C. and S. Jasem, Oxygen evolution on semiconducting oxides. Electrochimica Acta, 1977. 22(1): p. 31-34.
44. Gupta, V., S. Gupta, and N. Miura, Potentiostatically deposited nanostructured CoxNi1-x layered double hydroxides as electrode materials for redox-supercapacitors. Journal of Power Sources, 2008. 175(1): p. 680-685.
45. Gupta, V., S. Gupta, and N. Miura, Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor. Journal of Power Sources, 2010. 195(11): p. 3757-3760.
46. Y-Y Liang, S.-J.B., H-L Li Nanocrystalline nickel cobalt hydroxides/ultrastable Y zeolite composite for electrochemical capacitors Journal of Solid State Electrochemistry, 2007: p. 571-576.
47. Kuan-Xin, H., et al., Electrodeposition of Nickel and Cobalt Mixed Oxide/Carbon Nanotube Thin Films and Their Charge Storage Properties. Journal of The Electrochemical Society, 2006. 153(8): p. A1568-A1574.
48. Zheng, Z., et al., Large-scale synthesis of mesoporous CoO-doped NiO hexagonal nanoplatelets with improved electrochemical performance. Solid State Sciences, 2009. 11(8): p. 1439-1443.
49. Hu, C.-C. and C.-Y. Cheng, Ideally Pseudocapacitive Behavior of Amorphous Hydrous Cobalt-Nickel Oxide Prepared by Anodic Deposition. Electrochemical and Solid-State Letters, 2002. 5(3): p. A43-A46.
50. Fan, Z., et al., Preparation and capacitive properties of cobalt-nickel oxides/carbon nanotube composites. Electrochimica Acta, 2007. 52(9): p. 2959-2965.
51. Hu, Z.-A., et al., Synthesis and electrochemical characterization of mesoporous CoxNi1-x layered double hydroxides as electrode materials for supercapacitors. Electrochimica Acta, 2009. 54(10): p. 2737-2741.
52. Zhou, W.J., et al., Electrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitors. Microporous and Mesoporous Materials, 2009. 117(1-2): p. 55-60.
53. Gupta, V., et al., Potentiostatically deposited nanostructured [alpha]-Co(OH)2: A high performance electrode material for redox-capacitors. Electrochemistry Communications, 2007. 9(9): p. 2315-2319.
54. Chuang, P.-Y. and C.-C. Hu, The electrochemical characteristics of binary manganese-cobalt oxides prepared by anodic deposition. Materials Chemistry and Physics, 2005. 92(1): p. 138-145.
55. Nam, K.W. and K.B. Kim, A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism. Journal of The Electrochemical Society, 2002. 149(3): p. A346-A354.
56. Serebrennikova, I. and V.I. Birss, Mass changes accompanying the electrochemical reaction of sol-gel formed 50 : 50 Ni-Co oxide films. Journal of Electroanalytical Chemistry, 2000. 493(1-2): p. 108-116.
57. Lin, C., J.A. Ritter, and B.N. Popov, Development of Carbon-Metal Oxide Supercapacitors from Sol-Gel Derived Carbon-Ruthenium Xerogels. Journal of The Electrochemical Society, 1999. 146(9): p. 3155-3160.
58. J. C. F. Boodts, S.T., Hydrogen evolution on iridium oxide cathodes. Journal of Applied Electrochemistry 1988. 19: p. 255-262.
59. Jiang, Y.Q., Q. Zhou, and L. Lin. Planar MEMS Supercapacitor using Carbon Nanotube Forests. in Micro Electro Mechanical Systems, 2009. MEMS 2009. IEEE 22nd International Conference on. 2009.
60. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58.
61. Chen, M., et al., Catalyzed growth model of carbon nanotubes by microwave plasma chemical vapor deposition using CH4 and CO2 gas mixtures. Diamond and Related Materials. 12(10-11): p. 1829-1835.
62. Bard, A.J.F., L.R., Electrochemical principles, methods, and applications. 1996.
63. Komukai, T., et al., Density control of carbon nanotubes through the thickness of Fe/Al multilayer catalyst. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2006. 45(7): p. 6043-6045.
64. 袁國輝, 電化學電容器. 化學電源技術叢書 2006.

無法下載圖示 全文公開日期 2015/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE