簡易檢索 / 詳目顯示

研究生: 李品妮
Pin-Ni Lee
論文名稱: 含浸油之微孔薄膜表面抗生物膜形成之研究
Anti-biofilm performance of Liquid-infused microporous films
指導教授: 李振綱
Cheng-kang Lee
口試委員: 楊佩芬
Pei-Fen Yang
王孟菊
Meng-Jiy Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 80
中文關鍵詞: 微孔高分子薄膜抗生物膜光滑注液多孔表面多巴胺蛋白質吸附
外文關鍵詞: anti-biofilm, Liquid-infused, microporous films, SLIPS, dopamine
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

生物膜主要是由微生物所分泌的胞外高分子物質包覆微生物所構成,在醫療、工業、海洋船隻、運輸管線與食品加工等皆會造成嚴重問題,當微生物一旦在物體表面形成生物膜後不易被消除,因此事先防止生物膜的形成會比事後去除來的有效。本論文依據Aizenberg所提之光滑注液多孔表面(SLIPS)理論,利用微孔高分子薄膜上製備出SLIPS,並應用於抗生物膜之研究。
首先利用多巴胺可在各種材料表面形成聚多巴胺的特性,將微孔PE薄膜表面以聚多巴胺改質,再利用含硫醇之氟系分子使表面氟化,接著將氟系潤滑油K103浸潤於薄膜之微孔結構中,發現聚多巴胺塗層後並氟化並無法增加K103浸潤之含量及其穩定性,而直接將PE膜以K103浸潤(PEK)即可獲得穩定性良好的K103塗層,並可降低94 %的蛋白質吸附量及79 %的生物膜形成量。
礦物油、蔬菜油與K103皆可直接浸潤於PE膜中,以蔬菜油浸潤之PEV無法抗生物膜形成,而以礦物油浸潤之PEM可降低51 %生物膜形成量,以K103浸潤之PEK可降低71 %生物膜形成量,而PEK穩定性又較PEM來得好。
以K103浸潤不同孔徑大小之PTFE、PP、ZIP與PE膜,發現薄膜孔徑越大,其經SDS清洗之K103損失量越多,而抗蛋白質吸附之效果依序為PEK(70 %) > PPK(60 %) > PTFEK(33 %),抗生物膜形成之效果依序為PTFEK(76 %) > PEK(67 %)≧PPK(64 %),但從生物膜形成量來看PEK與PTFEK的結果最相近。


Bacteria once attach onto surfaces move and secrete extracellular polymeric substance to form biofilm. The bacterial communities have inherent resistance to antimicrobial agents and mechanical stress that leads to serious problems in the medical, industrial, marine vessels, transport pipelines and food processing. Therefore, prevention biofilm formation beforehand will be more effective than remove it afterword. Recently, Slippery Liquid-Infused Porous Surfaces (SLIPS) have been reported to have very effective anti-biofilm property. In this work, liquid-infused microporous film was studied for it anti-biofilm capability. The results show that protein adsorption can be reduced 94%. S.aureus biofilm formation over a 7-d period can also be reduced 79% when SLIPS surface were employed. Both microporous polyethylene and polypropylene surfaces resulted in biofilm formation within 8 hours. However, K103-infused PE shows approximately 2 fold reduction of protein adsorption and nearly low extent of S.aureus biofilm formation in comparison of K103-infused PTFE. We also found that fluorinated oil can directly infuse into the micropore of films without fluorinating the microporous film. The porous film with average pore size of 50nm and 6 % porosity enable K103 oil directly infuse the film and remained stable under SDS and sonication wash.

摘要 I 目錄 IV 圖目錄 VII 表目錄 IX 符號表 X 第一章 前言 1 1.1研究背景 1 1.2研究目的 3 第二章 文獻回顧 5 2.1生物膜 5 2.1.1生物膜簡介 5 2.1.2生物膜的形成 6 2.1.3載體材料性質對生物膜形成的影響 7 2.2抗生物膜材料 11 2.2.1概論 11 2.2.2常見抗菌劑 12 2.2.3 PEG表面修飾 13 2.3光滑注液多孔表面 14 2.4表面結構對注液之影響 16 2.5 超疏水材料 17 2.5.1 疏水結構 18 2.6 超疏油材料 20 2.7 超疏油疏水材料 21 第三章 實驗方法 22 3.1藥品及材料 22 3.2儀器設備 24 3.3藥品配製 25 3.4實驗流程 28 3.5薄膜製備 29 3.5.1氟化油浸潤聚多巴胺塗層之微孔PE膜 29 3.5.2氟化油、礦物油、蔬菜油等潤滑油直接浸潤多孔薄膜 30 3.5.3氟化油浸潤氧化鋁塗層玻璃 30 3.6分析儀器與方法 31 3.6.1 FESEM/SEM電子顯微鏡 31 3.6.2 UV-vis光譜儀之穿透度分析 31 3.6.3 TGA熱重分析儀 32 3.6.4 Contact angle接觸角測量儀 33 3.6.5 ImageJ影像處理軟體 34 3.6.6 Origin軟體計算P-value 35 3.7潤滑油浸潤之多孔表面性質分析 36 3.7.1蛋白質吸附分析(BCA assay) 36 3.7.2蛋白質吸附分析(BSA-FITC) 37 3.7.3靜態培養生物膜形成分析( SEM / Confocal ) 38 3.7.4動態培養生物膜形成分析(crystal violet stain) 39 3.7.5透氣性分析(濾紙變色法) 40 3.7.6穩定性分析(SDS清洗) 41 3.7.7 LIVE/DEAD Baclight Bacterial Viability kit 41 第四章 結果與討論 43 4.1氟化油浸潤聚多巴胺塗層之微孔PE膜 43 4.1.1聚多巴胺塗層與潤滑油浸潤對薄膜穩定性之影響 43 4.1.2聚多巴胺塗層與潤滑油浸潤對薄膜透明度之影響 48 4.1.3聚多巴胺塗層與潤滑油浸潤對薄膜蛋白質吸附之影響 49 4.2氟化油、礦物油、蔬菜油浸潤之微孔PE膜 52 4.2.1氟化油、礦物油、蔬菜油浸潤對薄膜透光度之影響 52 4.2.2氟化油、礦物油、蔬菜油浸潤對薄膜蛋白質吸附之影響 53 4.2.3氟化油、礦物油、蔬菜油浸潤對薄膜動態生物膜形成之影響 55 4.2.4氟化油、礦物油、蔬菜油浸潤對薄膜靜態生物膜形成之影響 56 4.3氟化油浸潤之PTFE、PE、PP、ZIP膜 59 4.3.1 PTFE、PE、PP、ZIP膜之孔徑及孔隙度 59 4.3.2氟化油浸潤PTFE、PE、PP、ZIP薄膜之穩定性 62 4.3.3氟化油浸潤PTFE、PE、PP、ZIP膜之透氣度 65 4.3.4氟化油浸潤PTFE、PE、PP膜對其蛋白質吸附之影響 66 4.3.5氟化油浸潤PTFE、PE、PP膜對其靜態生物膜形成之影響 68 4.3.6氟化油浸潤PTFE、PE、PP膜對其動態生物膜形成之影響 71 4.4氟化油浸潤氧化鋁塗層玻璃 72 4.4.1氟化油浸潤氧化鋁塗層玻璃之接觸角 72 4.4.2氟化油浸潤氧化鋁塗層玻璃對其靜態生物膜形成之影響 74 4.4.3氟化油浸潤氧化鋁塗層玻璃對其動態生物膜形成之影響 75 第五章 結論與未來展望 76 5.1 結論 76 5.2 未來展望 77 第六章 參考資料 78

1. Simoes, M.; Simoes, L. C.; Vieira, M. J., A review of current and emergent biofilm control strategies. LWT - Food Science and Technology 2010, 43 (4), 573-583.
2. Alexander K. Epsteina, T.-S. W., Rebecca A. Belisleb,Emily Marie Boggsa,and Joanna Aizenberg, Liquid-infused structured surfaces with exceptional anti-biofouling performance. 2012.
3. Genzer, J.; Efimenko, K., Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 2006, 22 (5-6), 339-60.
4. Bos, R.; van der Mei, H. C.; Gold, J.; Busscher, H. J., Retention of bacteria on a substratum surface with micro-patterned hydrophobicity. FEMS microbiology letters 2000, 189 (2), 311-5.
5. Poetes, R.; Holtzmann, K.; Franze, K.; Steiner, U., Metastable Underwater Superhydrophobicity. Physical Review Letters 2010, 105 (16), 166104.
6. Park, K. D.; Kim, Y. S.; Han, D. K.; Kim, Y. H.; Lee, E. H.; Suh, H.; Choi, K. S., Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 1998, 19 (7-9), 851-9.
7. Wong, T. S.; Kang, S. H.; Tang, S. K.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J., Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477 (7365), 443-7.
8. Kim, P.; Kreder, M. J.; Alvarenga, J.; Aizenberg, J., Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano Lett 2013, 13 (4), 1793-9.
9. Costerton, J. W.; Stewart, P. S.; Greenberg, E. P., Bacterial biofilms: a common cause of persistent infections. Science (New York, N.Y.) 1999, 284 (5418), 1318-22.
10. Renner, L. D.; Weibel, D. B., Physicochemical regulation of biofilm formation. MRS bulletin / Materials Research Society 2011, 36 (5), 347-355.
11. Bullitt, E.; Makowski, L., Structural polymorphism of bacterial adhesion pili. Nature 1995, 373 (6510), 164-7.
12. Thomas, W. E.; Nilsson, L. M.; Forero, M.; Sokurenko, E. V.; Vogel, V., Shear-dependent 'stick-and-roll' adhesion of type 1 fimbriated Escherichia coli. Molecular microbiology 2004, 53 (5), 1545-57.
13. Davidson, C. A.; Lowe, C. R., Optimisation of polymeric surface pre-treatment to prevent bacterial biofilm formation for use in microfluidics. Journal of molecular recognition : JMR 2004, 17 (3), 180-5.
14. Ista, L. K.; Fan, H.; Baca, O.; Lopez, G. P., Attachment of bacteria to model solid surfaces: oligo(ethylene glycol) surfaces inhibit bacterial attachment. FEMS microbiology letters 1996, 142 (1), 59-63.
15. Hyde, F. W.; Alberg, M.; Smith, K., Comparison of fluorinated polymers against stainless steel, glass and polypropylene in microbial biofilm adherence and removal. Journal of industrial microbiology & biotechnology 1997, 19 (2), 142-9.
16. Heistad, A.; Scott, T.; Skaarer, A. M.; Seidu, R.; Hanssen, J. F.; Stenstrom, T. A., Virus removal by unsaturated wastewater filtration: effects of biofilm accumulation and hydrophobicity. Water science and technology : a journal of the International Association on Water Pollution Research 2009, 60 (2), 399-407.
17. Truong, V.; Rundell, S.; Lapovok, R.; Estrin, Y.; Wang, J.; Berndt, C.; Barnes, D.; Fluke, C.; Crawford, R.; Ivanova, E., Effect of ultrafine-grained titanium surfaces on adhesion of bacteria. Appl Microbiol Biotechnol 2009, 83 (5), 925-937.
18. Machado, M. C.; Cheng, D.; Tarquinio, K. M.; Webster, T. J., Nanotechnology: pediatric applications. Pediatric research 2010, 67 (5), 500-4.
19. Chung, K. K.; Schumacher, J. F.; Sampson, E. M.; Burne, R. A.; Antonelli, P. J.; Brennan, A. B., Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases 2007, 2 (2), 89-94.
20. Hochbaum, A. I.; Aizenberg, J., Bacteria pattern spontaneously on periodic nanostructure arrays. Nano letters 2010, 10 (9), 3717-3721.
21. Xiang-Yang1, Q. H.-Y. W. W.-B. Z. Y. Z. L. X., Mechanism of biofilm formation and analysis of
influencing factors. Microbiology China 2013, 40 (4), 677-685.
22. Banerjee, I.; Pangule, R. C.; Kane, R. S., Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced materials (Deerfield Beach, Fla.) 2011, 23 (6), 690-718.
23. Lewis, K., Riddle of biofilm resistance. Antimicrobial agents and chemotherapy 2001, 45 (4), 999-1007.
24. Autumn, K.; Sitti, M.; Liang, Y. A.; Peattie, A. M.; Hansen, W. R.; Sponberg, S.; Kenny, T. W.; Fearing, R.; Israelachvili, J. N.; Full, R. J., Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences 2002, 99 (19), 12252-12256.
25. Silvestry-Rodriguez, N.; Bright, K. R.; Slack, D. C.; Uhlmann, D. R.; Gerba, C. P., Silver as a residual disinfectant to prevent biofilm formation in water distribution systems. Applied and environmental microbiology 2008, 74 (5), 1639-41.
26. Ko, C.-H.; Huang, C.-Y.; Hsieh, S.-P.; Kuo, P.-A., Characterization of two quaternary ammonium chloride-resistant bacteria isolated from papermaking processing water and the biocidal effect on their biofilm formation. International Biodeterioration & Biodegradation 2007, 60 (4), 250-257.
27. Wang, Y. Q.; Wang, T.; Su, Y. L.; Peng, F. B.; Wu, H.; Jiang, Z. Y., Remarkable reduction of irreversible fouling and improvement of the permeation properties of poly(ether sulfone) ultrafiltration membranes by blending with pluronic F127. Langmuir 2005, 21 (25), 11856-62.
28. Koch, K.; Bhushan, B.; Barthlott, W., Multifunctional surface structures of plants: An inspiration for biomimetics. Progress in Materials Science 2009, 54 (2), 137-178.
29. Bohn, H. F.; Federle, W., Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proceedings of the National Academy of Sciences of the United States of America 2004, 101 (39), 14138-14143.
30. NEINHUIS, C.; BARTHLOTT, W., Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces. Annals of Botany 1997, 79 (6), 667-677.
31. Wenzel, R. N., RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Industrial & Engineering Chemistry 1936, 28 (8), 988-994.
32. Cassie, A. B. D.; Baxter, S., Wettability of porous surfaces. Transactions of the Faraday Society 1944, 40 (0), 546-551.
33. Zhang, J.; Li, J.; Han, Y., Superhydrophobic PTFE Surfaces by Extension. Macromolecular Rapid Communications 2004, 25 (11), 1105-1108.
34. Zhang, L.; Wu, J.; Wang, Y.; Long, Y.; Zhao, N.; Xu, J., Combination of bioinspiration: a general route to superhydrophobic particles. Journal of the American Chemical Society 2012, 134 (24), 9879-81.
35. Xu, L.-P.; Zhao, J.; Su, B.; Liu, X.; Peng, J.; Liu, Y.; Liu, H.; Yang, G.; Jiang, L.; Wen, Y.; Zhang, X.; Wang, S., An Ion-Induced Low-Oil-Adhesion Organic/Inorganic Hybrid Film for Stable Superoleophobicity in Seawater. Advanced Materials 2013, 25 (4), 606-611.
36. Li, L.; Breedveld, V.; Hess, D. W., Design and fabrication of superamphiphobic paper surfaces. ACS applied materials & interfaces 2013, 5 (11), 5381-6.
37. Xu, M.; Bunes, B. R.; Zang, L., Paper-based vapor detection of hydrogen peroxide: colorimetric sensing with tunable interface. ACS applied materials & interfaces 2011, 3 (3), 642-7.
38. Bernsmann, F.; Frisch, B.; Ringwald, C.; Ball, V., Protein adsorption on dopamine-melanin films: role of electrostatic interactions inferred from zeta-potential measurements versus chemisorption. Journal of colloid and interface science 2010, 344 (1), 54-60.
39. Puckett, S. D.; Taylor, E.; Raimondo, T.; Webster, T. J., The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 2010, 31 (4), 706-13.

無法下載圖示 全文公開日期 2019/01/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2019/01/20 (國家圖書館:臺灣博碩士論文系統)
QR CODE