簡易檢索 / 詳目顯示

研究生: 邱繹恩
Yi-En Chiu
論文名稱: 高速EML光傳輸模組整合模擬與優化
Co-Simulation and Optimization of High Speed EML Transmitters
指導教授: 李三良
San-Liang Lee
口試委員: 曹恆偉
Hen-Wai Tsao
曾昭雄
Chao-Hsiung Tseng
楊淳良
Chun-Liang Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 78
中文關鍵詞: 光傳輸模組外部調變雷射雷射等效電路
外文關鍵詞: EML submount, PAM-4 signal, EML equivalent circuit
相關次數: 點閱:422下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

因應高速傳輸通訊的需求,如何增加通道頻寬與資料量已成為研發技術的重點,本論文為研發及模擬高速EML基板模組使其達50GBaud/s傳輸資料速率目標,首先根據本實驗室歷年來所建立出的EML等效電路模型進行修改,藉由調整EML等效電路內部的元件來優化頻寬,並針對放置EML晶片之傳輸線基板進行設計及討論。在EML基板模組傳輸PAM-4訊號的3-dB頻寬要求上,需符合頻寬35 GHz以上以讓訊號完整傳輸。本論文利用電路模擬系統ADS及3D電磁模擬軟體模擬信號完整度。
最後整合EML基板模組架構以進行模組頻寬的提升,本論文成功建立元件與基板模型,利用EML等效電路和打線之長度進行優化,與實際量測結果比較及分析。未來在完成EML基板製作以及與EML封裝後,可與量測結果進行比較驗證,透過反覆模擬及實驗驗證,可望達成符合規範的單通道50 Gbaud/s EML模組。


Increasing the channel bandwidth and data rates are the main focus of research and development in optical communication industry to meet the demands of high-speed optical transmission and interconnect. This thesis presents the design and simulation of 50-Gbaud/s submount for electro-absorption modulated lasers (EMLs) by modifying the EML equivalent circuit model based on the prior research of our lab. In order to optimize the EML bandwidth, we adjust the component values in the equivalent circuit model of an EML. Then, the transmission line model of the submount for the EML chip is designed and discussed. To transmit 50 Gbaud/s PAM-4 signals, the 3-dB bandwidth of the EML transmitter needs to be above 35 GHz in order to transmit the major signal spectrum.
In this work, we use the PathWave Advanced Design System (ADS) and 3-D electromagnetic simulation software (HFSS) to co-simulate the EML and its submount to assure sufficient bandwidth for transmitting high-speed signals. The EML submount is simulated to provide enough bandwidth for the EMLs. The optimization is conducted by tuning the EML model and the length of the bondwire as well as by improving the S-parameters of an EML submount. The device modeling of EMLs and submounts can be verified and fine-tuned to finally achieve the 50 Gbaud/s data rate by comparing the measurement results and the simulations.

目錄 摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X 第1章 導論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻探討 4 1.4 論文架構 8 第2章 基板設計及模擬結果 9 2.1 前言 9 2.2 傳輸線原理 9 2.2.1 微帶線與帶狀線 9 2.2.2 共平面波導 12 2.3 3D電磁模擬軟體設定 15 2.3.1 軟體介紹 15 2.3.2 電磁模擬軟體要素 16 2.4 傳輸線模型 19 2.4.1 對稱型共地共平面波導 19 2.4.2 非對稱型共地共平面波導 24 第3章 調變訊號PAM-4介紹與EML模擬 26 3.1 前言 26 3.2 單通道光次傳輸模組 26 3.3 訊號調變方式 27 3.3.1 不歸零編碼訊號調變訊號 27 3.3.2 四階脈衝振幅調變訊號 28 3.4 直調雷射與外調雷射簡介 29 3.5 EML小信號電路模型設計 31 3.6 EML模型之眼圖 39 3.6.1 NRZ眼圖模擬 39 3.6.2 PAM-4眼圖之模擬 40 第4章 光傳輸模組整合及優化 42 4.1 前言 42 4.2 EML基板架構及模擬 42 4.3 EML等效電路模組優化 48 4.4 量測結果 50 4.4.1 25°C EML量測結果 51 4.4.2 55°C EML量測結果 55 第5章 結論 61 5.1 成果 61 5.2 未來研究方向 62 參考文獻 63

[1] E. Alliance. ( 2018). New 2018 Ethernet Roadmap Looks to Future Speeds of 1.6 Terabits.
Available:https://insidehpc.com/2018/03/new-2018-ethernet-roadmap-looks-future-speeds-1-6-terabits-s/
[2] Y. Wang, Y. Cheng, F. Zhou, H. Zhu, L. Zhao, and W. Wang, “Design of high frequency compensation submount for 40Gbit/s lumped electroabsorption modulated lasers,” in Proc. OSA/ACP 2009.
[3] 邱譯緯, “EML等效電路設計與光傳輸模組整合模擬,” 國立台灣科技大學碩士論文 2018.
[4] 羅科閔, “25Gbaud/s PAM-4 調變電路整合於光傳輸模組,” 國立台灣科技大學碩士論文 2019.
[5] N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, “Electrical and Optical Coupling in an Electroabsorption Modulator Integrated With a DFB Laser, ” IEEE Journal of Quantum Electronics, vol. 43, no. 7, pp. 535-544, 2007.
[6] O. K. Kwon, Y. T. Han, Y. S. Baek, and Y. C. Chung, “Improvement of modulation bandwidth in electroabsorption-modulated laser by utilizing the resonance property in bonding wire, ” Optics Express, vol. 20, no. 11, pp. 11806-11812, 2012/05/21 2012.
[7] A. Sain, and K. L. Melde, “Impact of Ground via Placement in Grounded,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.6, no.1, 2016, pp. 136 - 144.
[8] I. Rosu, “Microstrip, Stripline, CPW and SIW Design,” YO3DAC / VA3IUL, http://www.qsl.net/va3iul.
[9] R. Garg, I. J. Bahl, and M. Bozzi, Microstrip Lines and Slotlines, Third Edition, 2013
[10] C. P. Wen, “Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications, ”IEEE Transactions on Microwave Theory and Techniques, vol.17, no. 12, Dec 1969.
[11] B. C. Wadell, Transmission Line Design Handbook, 1991
[12] C. C. Tien, C. K. C. Tzuang, S.T. Peng, C. C Chang, “Transmission Characteristics of Finite-Width Conductor-Backed Coplanar Waveguide,” IEEE Transactions on Microwave Theory and Techniques, vol. 41, no. 9, pp. 224-235, Sep 1993.
[13] Ansoft, Port Tutorial Series: Coplanar Waveguide (CPW).HFSS v8 Training, 2005.
[14] Z. Zhang, Y. Liu, J. Wang, J. Bai, H. Yuan, X. Wang, J. Liu, and N. Zhu, “Three-Dimensional Package Design for Electro-Absorption Modulation Laser Array,” IEEE Photonics Journal, vol. 8, no. 2, April 2007.
[15] M. N. T. Kishi, S. Kanazawa, W. Kobayashi, H. Yamazaki, M. Ida, K. Kurishima, M. Nogawa, S. Kimura, and H. Nosaka, “56-Gb/s Optical Transmission Performance of an InP HBT PAM4 Driver Compensating for Nonlinearity of Extinction Curve of EAM,” Journal of Lightwave Technology, vol. 35, no. 1, pp. 75-81, 2017.
[16] 吳奇璋,「分佈反饋式雷射與行波式電致吸收調變器積體化元件製作」,國立台灣科技大學碩士論文,2010, pp.2-5
[17] O. Kibar, D. Van Blerkom, C. Fan, P. J. Marchand, and S. C. Esener, "Small-signal-equivalent circuits for a semiconductor laser," Applied Optics, vol. 37, no. 26, pp. 6136-6139, 1998/09/10 1998.
[18] G. L. Li, P. K. L. Yu, W. S. C. Chang, K. K. Loi, C. K. Sun, and S. A. Pappert, “Concise RF equivalent circuit model for electroabsorption modulators, ” Electronics Letters, vol. 36, no. 9, pp. 818-820, 2000.
[19] E. Sackinger, Broadband Circuits for Optical Fiber Communication, Wiley, 2005.

無法下載圖示 全文公開日期 2025/08/19 (校內網路)
全文公開日期 2025/08/19 (校外網路)
全文公開日期 2025/08/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE