簡易檢索 / 詳目顯示

研究生: 李炅倫
Jiong-Lun Li
論文名稱: 考慮數量分布的混合物聯網惡意軟體傳播之建模
On Modeling Hybrid IoT Malware Propagation Considering Size Distributions
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 鄧惟中
Wei-Chung Teng
沈上翔
Shan-Hsiang Shen
鄭欣明
Shin-Ming Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 36
中文關鍵詞: 惡意軟體傳播數量分布物聯網傳染病學建模
外文關鍵詞: Malware, Propagation, Size Distributions, Interent of Things, epidemic, Model
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著物聯網的概念在近代網路中的興起以及普及,越來越多的惡意軟體開始透過 物連網路進行傳播,為物聯網中的資訊安全增加了不少威脅。因此藉由在物聯網 中建立準確的數學建模來達到了解惡意軟體在物聯網中的傳播就變成了一項重要 的課題,基於對傳染病理論以及其模型的啟發,許多論文藉由分析惡意軟體的漣 漪傳播行為進而去推導出該惡意軟體的傳播建模,然而因為物聯網中裝置的移動 性以及其複雜的傳播途徑,導致所建立的數學建模並不是那麼的準確。在這篇論 文中,我們考量了物聯網惡意軟體的數量分布並提出一個新的數學建模來達到更 準確的傳播速率模型,除此之外,基於推導的建模,我們更提出了一個條件轉換 的判斷式用以確立所使用的數量分布之合法性,最後我們總結我們的建模,提出 了一個公式用來簡單的判斷該網路是否達到傳染病臨界值,最後的實驗結果也驗 證了我們的建模和真實資料相當的契合。


    With the increasing use of Interent of Things (IoT) in current network, more and more malware can launch attack through IoT network, and poses a critical threat to network security. Accurate malware propagation modeling in IoT network rep- resents a fundamental research issue which show how malware dynamic infected. Inspired from epidemiology, many paper analyze the mixed behaviors of delocalized infection and ripple-based propagation for the hybrid malware in IoT network by SI model. Howerver, this kind of model will overestimate the malware infected rate. Because the node mobility is random and node infected is not always ripple-based propagation. In this paper. We consider how malware propagates in network and infected node size distrubution. We formula a modify propage model based on SI model to analyze infection rate to t real network trace accuratly. Since we consider di erent size distrubution in di erent time stage, we need to give a transition condi- tion to make distrubution conform the network propagation rate. Our contribution is presente a stage transition condition to determine suitable size distrubution to formula model. Otherwise, based on our formulation, we give a judgment to quickly determine if the network will be completely paralyzed. Finaly, we compare other proposed model in real dataset and the result shows that experiments have been more closer to real data.

    Chinese Abstract ............................. 1 Abstract............................................2 TableofContents............................. .3 ListofTables......................................4 List of Illustrations............................5 1 Introduction................................... 7 2 BackgroundandRelatedWork......................... 13 3 SystemModelandProblemformulation ................... 17 3.1 SpreadingDynamicsviaInfrastructure ................. 18 3.2 SpreadingDynamicsviaD2D ...................... 19 3.2.1 SpreadingDynamicsviaD2DinEarlystage . . . . . . . . . . 20 3.2.2 SpreadingDynamicsviaD2DinFinalstage . . . . . . . . . . 21 4 StageTransitionCondition........................... 22 5 EpidemicThresholdJudgment......................... 24 6 Simulation.................................... 26 6.1 SimulationSetup ............................. 26 6.2 SimulationResult............................. 26 7 Conclusion.................................... 33 References...................................... 34

    [1] C.-C. Zou, W. Gong, D. Towsley, and L. Gao, “The monitoring and early detection of internet worms,” IEEE/ACM Trans. Netw., vol. 13, no. 5, pp. 961–974, Oct. 2005.
    [2] S.-M. Cheng, W. C. Ao, P.-Y. Chen, and K.-C. Chen, “On modeling malware progation in generalized social networks,” IEEE Commun. Lett., vol. 15, no. 1, pp. 25–27, Jan. 2011.
    [3] W. Dong, B. Lepri, and S. A. Pentland, “Modeling the co-evolution of behaviors and social relationships using mobile phone data,” in Proc. MUM 2011, Dec. 2011, pp. 134–143.
    [4] A.-K. Pietilainen and D. Christophe, “CRAWDAD dataset thlab/sigcomm2009 (v. 2012-07-15),” July 2012.
    [5] P.-Y. Chen, S.-M. Cheng, and K.-C. Chen, “Optimal control of epidemic in- formation dissemination over networks,” IEEE Tran. on Cybernetics, vol. 44, no. 12, pp. 2316–2328, Dec. 2014.
    [6] P.-Y. Chen, C.-C. Lin, S.-M. Cheng, H.-C. Hsiao, and C.-Y. Huang, “Decapita- tion via digital epidemics: A bio-inspired transmissive attack,” IEEE Commun. Mag., vol. 54, pp. 75–81, June 2016.
    [7] S.-M. Cheng, P.-Y. Chen, C.-C. Lin, and H.-C. Hsiao, “Tra c-aware patching for cyber security in mobile IoT,” IEEE Commun. Mag., vol. 55, no. 7, pp. 29–35, July 2017.
    [8] S. Sharmeen, S. Huda, J. H. Abawajy, W. N. Ismail, and M. M. Hassan, “Mal- ware threats and detection for industrial mobile-iot networks,” IEEE Access, vol. 6, pp. 15 941–15 957, Mar. 2018.
    [9] S. Edwards and I. Profetis, “Hajime: Analysis of a decentralized internet worm for iot devices,” Rapidity Network, vol. 16, 2016.
    [10] J. Whitter-Jones, “Security review on the internet of things,” in IEEE FMEC 2018, Apr. 2018, pp. 163–168.
    [11] M. Roberts and J. Heesterbeek, Mathematical models in epidemiology, 2003.
    [12] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free net-
    works,” Phys. Rev. Lett., vol. 86, no. 14, p. 3200, Apr. 2001.
    [13] Y. Moreno, J. B. Gómez, and A. F. Pacheco, “Epidemic incidence in correlated
    complex networks,” Phys. Rev. E, vol. 68, no. 3, p. 35103, Sept. 2003.
    [14] M. R. Faghani and U. T. Nugyen, “Modeling the propagation of trojan malware
    in online social networks,” arXiv:1708.00969, Aug. 2017.
    [15] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, “Epidemic spreading in real networks: an eigenvalue viewpoint,” in Proc. IEEE SRDS 2003, Oct. 2003, pp. 25–34.
    [16] D. Tian, Z. Dai, J. Zhou, X. Duan, Z. Sheng, M. Chen, Q. Ni, and V. Leung, “Optimal epidemic information dissemination in uncertain dynamic environ- ment,” IEEE Microw. Wireless Compon. Lett., Sept. 2017.
    [17] S. Yu, G. Gu, A. Barnawi, S. Guo, and I. Stojmenovic, “Malware propagation in large-scale networks,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 1, pp. 170–179, Jan. 2015.
    [18] M. Scatà, A. D. Stefano, P. Liò, and A. L. Corte, “The impact of heterogeneity and awareness in modeling epidemic spreading on multiplex networks,” Scien- ti c reports, vol. 6, Nov. 2016.
    [19] B. Min and K.-I. Goh, “Layer-crossing overhead and information spreading in multiplex social networks,” arXiv:1307.2967, Feb. 2016.
    [20] X. Wei, X. Wu, S. Chen, J.-A. Lu, and G. Chen, “Cooperative epidemic spread- ing on a two-layered interconnected network,” arXiv preprint arXiv:1702.03926, Feb. 2017.
    [21] A. Sathanur, M. Halappanavar, and W. S. Yi Shi, “Exploring the role of in- trinsic nodal activation on the spread of in uence in complex networks,” arXiv: 1707.05377, July 2017.
    [22] P. D. Stroud, S. J. Sydoriak, J. M. Riese, J. P. Smith, S. M. Mniszewski, and P. R. Romero, “Semi-empirical power-law scaling of new infection rate to model epidemic dynamics with inhomogeneous mixing,” Math. Biosci., vol. 203, no. 2, pp. 301–318, Mar. 2006.
    [23] N. Kayastha, D. Niyato, P. Wang, and E. Hossain, “Applications, architectures, and protocol design issues for mobile social networks: A survey,” Proc. IEEE, vol. 99, no. 12, pp. 2130–2158, Dec. 2011.
    [24] P.-Y. Chen, S. M. Cheng, and M. H. Sung, “Analysis of data dissemination and control in social internet of vehicles,” IEEE Internet of Things Journal, May 2018, accepted for publication.
    [25] R. K. Shakya, “A modi ed si epidemic model for combating virus spread in spatially correlated wireless sensor networks,” arXiv:1801.04744, Jan. 2018.
    [26] W. Wang, Q.-H. Liu, L.-F. Zhong, M. Tang, H. Gao, and H. E. Stanley, “Pre- dicting the epidemic threshold of the susceptible-infected-recovered model,” Scienti c reports 2016, vol. 6, p. 24676, Apr. 2016.
    [27] M. E. J. Newman, “Spread of epidemic disease on networks,” Phys. Rev. E, vol. 66, no. 1, p. 16128, Feb. 2002.
    [28] B. Shulgin, L. Stone, and Z. Agur, “Pulse vaccination strategy in the SIR epidemic model,” J. Math. Biol., vol. 60, no. 6, pp. 1123–1148, Nov. 1998.
    [29] B. Liu, W. Zhou, L. Gao, H. Zhou, T. H. Luan, and S. Wen, “Malware propa- gations in wireless ad hoc networks,” IEEE Trans. Dependable Secure Comput., pp. 1–1, Dec. 2017.

    無法下載圖示 全文公開日期 2023/08/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE