簡易檢索 / 詳目顯示

研究生: 鄭大佑
Ta-Yu Cheng
論文名稱: 多相位電壓控制振盪器
Multiphase Voltage-Controlled Oscillators
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 莊敏宏
Miin-Horng Juang
徐敬文
Ching-Wen Hsue
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 104
中文關鍵詞: 多相位電壓控制振盪器
外文關鍵詞: Multi-phase, VCO
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   電壓控制振盪器為頻率合成器中之主要電路區塊,振盪器的操作頻率範圍決定頻率合成器之頻寬,因此在寬頻應用中需要寬頻電壓控制振盪器。一個好的振盪器必須具有低相位雜訊之特性,以避免相鄰頻帶雜訊的混波轉換。本論文我們主要研究設計多相位電壓控制振盪器,在許多無線通訊系統裡,多相位電壓控制振盪器都扮演著舉足輕重的腳色。
      首先,我們提出一個三相位克萊普電壓控制振盪器,由台積電90 nm製程製造完成,設計此三相位電壓控制振盪器時,我們使用pMOS環形架構將三組單端串聯調變振盪器連接,且透過考畢子負阻抗元件的電容來降低相位雜訊。此電路之供應電壓為0.88 V,頻率為8.08 GHz至8.94 GHz,範圍為0.86 GHz。而在輸出頻率為8.822 GHz時,1 MHz偏移頻率下相位雜訊為 -117.18 dBc/Hz,消耗功耗為4.04 mW,figure of merit(FOM)為 -190.1 dBc/Hz。
      其次提出的是一個互補式考畢子電壓控制振盪器,由台積電0.18 μm製程製造完成,可產生三相位輸出且具有寬鎖頻範圍。我們設計三組單端電流再利用壓控振盪器,再從電感部分以三角架構連接。此電路之供應電壓為1.5 V,頻率為6.22 GHz至7.27 GHz,範圍為1.05 GHz。而在輸出頻率為6.22 GHz時,1 MHz偏移頻率下相位雜訊為 -115.25 dBc/Hz,消耗功耗為11.47 mW,figure of merit(FOM)為 -180.53 dBc/Hz,figure of merit with tuning range(FOMT)則為 -184.1 dBc/Hz。
    最後,我們提出一個平衡式多相位壓控振盪器,可產生三相位輸出且具有寬鎖頻範圍。我們設計三組以平衡式架構組成的單端電流再利用壓控振盪器,並在輸入電壓與接地端分別使用磅線連接到壓控振盪器電路。此電路之供應電壓為1.05 V,頻率為7.155 GHz至8.098 GHz,範圍為0.943 GHz。而在輸出頻率為7.51 GHz時,1 MHz偏移頻率下相位雜訊為 -114.98 dBc/Hz,消耗功耗為2.34 mW,figure of merit(FOM)為 -188.8 dBc/Hz。


    The voltage-controlled oscillator (VCO) is main block of a frequency synthesizer’s. Bandwidth of a frequency synthesizer is dominated by operating frequency ranges of the block, so we require wideband VCOs for wideband applications. A good VCO must exhibit low-phase-noise characteristic to prevent noise in adjacent frequencies from being down-converted or up-converted. In this thesis, we focus on the design of multiphase voltage-controlled oscillators, the multiphase voltage-controlled oscillators are essential parts of many wireless telecommunication systems.
    Firstly, we present a three-phase Clapp VCO, the structure is fabricated in TSMC 90 nm process. The designed 3-phase VCO uses three single-ended series-tuned p-core VCOs coupled via a three-stage pMOSFET ring. The phase noise is reduced through a capacitor in the Colpitts negative resistance cell. At the supply voltage 0.88 V, the tuning range is 0.86 GHz, ranging from 8.08 GHz to 8.94 GHz. Phase noise at 1 MHz offset frequency from the carrier frequency 8.822 GHz is -117.18 dBc/Hz. The power consumption is 4.04 mW. Figure of merit (FOM) is -190.1 dBc/Hz.
    Then, a complementary Colpitts voltage controlled oscillator (VCO) in TSMC 0.18 μm CMOS process is presented to generate three output phases with wide tuning range. The designed VCO uses three single-ended current-reused VCOs coupled via the three-resonator inductors connected in a delta configuration. At the supply voltage 1.5 V, the tuning range is 1.05 GHz, ranging from 6.22 GHz to 7.27 GHz. Phase noise at 1 MHz offset frequency from the carrier frequency 6.22 GHz is -115.25 dBc/Hz. The power consumption is 11.47 mW. Figure of merit (FOM) and the figure of merit with tuning range (FOMT) are -180.53 dBc/Hz and -184.1 dBc/Hz respectively.
    Finally, a multi-phase voltage-controlled oscillator (VCO) using balanced architecture in TSMC 0.18 μm CMOS process is proposed to generate three output phases with wide tuning range. The designed VCO uses three identical single-ended current-reused LC VCOs configured in balanced architecture with two common bonding wires connected to the supply and ground. At the supply voltage 1.05 V, the tuning range is 0.943 GHz, ranging from 7.155 GHz to 8.098 GHz. Phase noise at 1 MHz offset frequency from the carrier frequency 7.51 GHz is -114.98 dBc/Hz. The power consumption is 2.34 mW. Figure of merit (FOM) is -188.8 dBc/Hz.

    中文摘要 I Abstract III 致謝 V Table of Contents VI List of Figures VIII List of Tables XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 3 Chapter 2 Principles and Design Considerations of Voltage-Controlled 0000000000Oscillators 5 2.1 Fundamental Oscillator Models 5 Feedback (Two-Port) Oscillators 5 Negative-Resistance (One-Port) Oscillators 8 2.2 Review of Oscillator Topologies 11 Resonator-Less Oscillators 12 LC Oscillators 15 Voltage-Controlled Oscillators 20 2.3 Parameters of a Voltage-Controlled Oscillator 21 Center Frequency 21 Power Consumption 22 Phase Noise 22 Frequency Tuning Range 22 Frequency Tuning Sensitivity 23 Output Signal Power 23 Figure-of-Merit (FoM) 24 2.4 Phase Noise in Oscillators 24 Definition of Phase Noise 24 Linear Time Invariant (LTI) Model 26 Linear Time Variant (LTV) Model 30 Noise Sources 32 Thermal noise 33 Flicker noise 35 Phase Noise in Communications 36 Models of Phase Noise 38 2.5 Resistors, Inductors and Capacitors in Semiconductor Technologies 39 Resistors 39 Inductors 40 Transformers 48 Capacitors 52 Varactors 54 Chapter 3 A Three-Phase All-PMOSFET Clapp CMOS Voltage-Controlled 0000000000Oscillator 60 3.1 Introduction 60 3.2 Circuit Design 63 3.3 Measurement Results 72 3.4 Conclusion 78 Chapter 4 A Three-Phase Complementary Colpitts VCO Implemented with a 0000000000LC-Ring Resonator 79 4.1 Introduction 79 4.2 Circuit Design 81 4.3 Measurement Results 84 4.4 Conclusion 88 Chapter 5 A Multi-Phase Voltage-Controlled Oscillator Using Balanced 0000000000Architecture 89 5.1 Introduction 89 5.2 Circuit Design 90 5.3 Measurement Results 94 5.4 Conclusion 97 Chapter 6 Conclusion 98 References 100

    [1] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
    [2] G. Gonzales, Microwave Transistor Amplifiers: Analysis and Design, Prentice Hall 1996.
    [3] S.-L. Jang, C.-C. Liu, M.-H. Suchen, and S.-H. Huang, “An eight-phase CMOS voltage controlled oscillator,” Microwave and Optical Technology Lett., vol. 51, no. 5, pp. 1225–1228, May 2009.
    [4] A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Springer 1999.
    [5] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
    [6] T. H. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuit, vol. 35, no. 3, pp. 326–336, Mar. 2000.
    [7] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, no. 2, pp. 329–330, Feb. 1966.
    [8] A. Hajimiri and T. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [9] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press 1998.
    [10] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, no. 2, pp. 101–109, Jun 1974.
    [11] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, Sept. 2000.
    [12] E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661–664, June 1989.
    [13] Marc Tiebout, Low Power VCO Design in CMOS, Springer 2009.
    [14] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuit, vol. 35, no. 6, pp. 905–910, Jun. 2000.
    [15] L. Dai and R. Harjani, "Design of low-phase-noise CMOS ring oscillators." IEEE Trans. Circuits Syst. II, vol. 49, pp. 328-338, 2002.
    [16] B. Razavi , “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp. 331–343, Mar. 1996.
    [17] S. L. J. Gierkink, E. A. M. Klumperink, A. P. van derWel, G. Hoogzaad, E. van Tuijl, and B. Nauta, “Intrinsic 1/f device noise reduction and its effect on phase noise in CMOS ring oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 1022–1025, July 1999.
    [18] J. J. Kim and B. Kim, “A low-phase-noise CMOS LC oscillator with a ring structure”, in ISSCC digest of technical papers, pp. 430-431, 2000.
    [19] M. Soyuer, J. N. Burghartz, H. A. Ainspan, K. A. Jenkins, P. Xiao, A. R. Shahani, M. S. Dolan, and D. L. Harame, “An 11-GHz 3-V SiGe voltage controlled oscillator with integrated resonator,” IEEE J. of Solid-State Circuits, vol. 32, no. 9, pp. 1451-1454, Sep. 1997.
    [20] W. Perndl, H. Knapp, K. Aufinger, T. F. Meister, W. Simbürger, and A. L. Scholtz, “Voltage-controlled oscillators up to 98 GHz in SiGe bipolar technology,” IEEE J. of Solid-State Circuits, vol. 39, no. 10, pp. 1773-1777, Oct. 2004.
    [21] S.-L. Jang, Y.-J. Song, and C.-C. Liu, ” A differential Clapp VCO in 0.13μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., pp. 404-406, June, 2009.
    [22] S.-L. Jang, C.-C. Liu, Y.-J. Song, and M.-H. Juang , ” A low voltage balanced Clapp VCO in 0.13 μm CMOS technology,” Microwave and Optical Technology Lett., vol. 52, no. 7, pp., 1623-1625, July , 2010.
    [23] R. Tonietto, LBietti, B.Mercier, R. Marbot, and R. Castello “A six phases LC based ring oscillator for 1.5-3Gbith SATA interface, ” in IEEE Symposium on VLSI Circuits Digest of Technical Paper, 2004, pp. 260-263.
    [24] K. Lee, J. Park, J.-W. Lee, S.-W. Lee, H.-K. Huh, D.-K. and Jeong, W. Kim, “A single-chip 2.4GHz direct-conversion CMOS receiver for wireless local loop using multiphase reduces frequency conversion technique,” IEEE J. Solid-State Circuits, vol. 36, No.5, pp. 800-809, May, 2001.
    [25] J. Choi and A. Mortazawi, “Design of push–push and triple-push oscillators for reducing 1/f noise upconversion,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3407–3414, Nov. 2005.
    [26] O. K. K., N. Park, D.-J. Yang, “1/f noise of NMOS and PMOS transistors and their implications to design of voltage controlled oscillators,” (RFIC) Symposium IEEE, pp. 59 – 62, 2-4 June 2002.
    [27] F. Svelto, S. Deantoni, and R. Castello, “A 1.3 GHz low phase noise fully tunable CMOS LC VCO,” IEEE J. Solid- State Circuits, vol.35, pp. 356-361, March 2000.
    [28] J. W. M. Rogers, J. A. Macedo, and C. Plett, “The effect of varactor nonlinearity on the phase noise of completely integrated VCOs,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1360–1367, 2003.
    [29] S. Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5-GHz CMOS VCOs: Impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003–1011, Aug. 2002.
    [30] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, pp. 896–909, June 2001.
    [31] C.-C. Liu, S.-L. Jang, C.-C. Wang, and M.-H. Juang “A transconductance-boosted complementary Colpitts voltage-controlled oscillator,” in press, Microwave and Optical Technology Lett., 2011.
    [32] K. Hu, F. Herzel and J. C. Scheytt, ”Fully integrated 9 GHz CMOS VCO with very low phase noise,” In Proceedings of ISCAS, 2010, 1899 - 1902.
    [33] J.-A. Hou and Y.-H. Wang, “A 7.9 GHz low-power PMOS Colpitts VCO using the gate inductive feedback ” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 223–225, April 2010.
    [34] S.-L. Jang, C.-C. Shih, C.-C. Liu, and M.-H. Juang, ” A 0.18 μm CMOS quadrature VCO using the quadruple push-push technique,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.343-345, June, 2010.
    [35] S.-L. Jang, C.-Y. Wu, C.-C. Liu, and M.-H. Juang, ” A 5.6 GHz low power balanced VCO in 0.18 μm CMOS,” IEEE Microw. Wireless Compon. Lett., pp. 233-235, April, 2009.
    [36] Y.-L. Tang and H. Wang, “Triple-push oscillator approach: Theory and experiments,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp.1472–1479, Oct. 2001.
    [37] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
    [38] D. Baek, S. Ko, J.-G. Kim, D.-W. Kim, and S. Hong, “Ku-band InGaPGaAs HBT MMIC VCOs with balanced and differential topologies,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1353–1359, Apr. 2004.
    [39] Y.-H. Chuang, S.-L. Jang, S.-H. Lee, R.-H. Yen, and J.-J. Jhao, “5-GHz low power current-reused balanced CMOS differential Armstrong VCOs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 139–141, Feb. 2007.
    [40] E. Laskin, P. Chevalier, A. Chantre, B. Sautreuil, and S. Voinigescu, “165-GHz Transceiver in SiGe technology,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1087–1100, May. 2008.
    [41] C.-Y. Cha and S.-G. Lee, “A complementary Colpitts oscillator in CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 881–887, Mar. 2005.
    [42] S. Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5-GHz CMOS VCOs: Impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003–1011, Aug. 2002.

    無法下載圖示 全文公開日期 2016/07/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE