簡易檢索 / 詳目顯示

研究生: 林冠宇
Kuan-Yu Lin
論文名稱: 理論計算於碳基材料為對電極和陰極材料在太陽能電池和儲能系統上的研究和應用
Theoretical Study on Carbon-based Materials as Counter Electrode and Cathode Material for Photovoltaic and Energy Storage Devices
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 江志強
Jyh-Chiang Jiang
黃炳照
Bing-Joe Hwang
張家耀
Jia-Yaw Chang
葉旻鑫
Min-Hsin Yeh
Vijay
Neralla Vijayakameswara Rao
郭哲來
Jer-Lai Kuo
蔡明剛
Ming-Kang Tsai
葉丞豪
Chen-Hao Yeh
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 191
中文關鍵詞: 太陽能電池觸媒對電極摻雜石墨烯鋰硫電池理論計算
外文關鍵詞: Photovoltaic devices, Catalytic counter electrode, Doped graphene, Lithium-sulfur batteries, DFT calculations
相關次數: 點閱:627下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

面對人類未來對永續環境與能源的高度需求,人們意識到太陽能在永續能源開發上扮演越來越重要的角色,因此如何開發低成本、高效率和潔淨的太陽能技術將成為刻不容緩的議題。染料敏化太陽能電池 (Dye-sensitized solar cells, DSSCs) 和量子點太陽能電池 (Quantum dots solar cell, QDSCs) 是第三代的奈米薄膜太陽能電池,優點在於原料成本低、製程容易與簡單的製程設備,因此DSSCs和QDSCs受到各界專家學者的重視。經過多年研究,許多科學家發現,可以利用價格低、導電性佳的石墨烯材料作為太陽能電池對電極的材料。然而,石墨烯完美的蜂巢結構與單一的元素組成,使其不利於在電催化領域的應用,透過摻雜其它元素於石墨烯表面,可以對石墨烯的結構和物理化學性質進行調控,使其在電催化等領域表現出優異的性能,更適合應用在染敏電池的對電極中。因此,本篇博士論文研究方向著重在理論計算對於摻雜石墨烯的種類、物理、化學性質如何改變,和它們於對電極上的應用。
當染敏電池開始運作的時候,正負電極之間因電位的改變產生了內電場,進而影響電池內部的電化學反應。因此在本研究的第二部分,利用外加電場的方式,模擬碘分子在氮摻雜石墨烯 (NC5) 表面的解離反應。計算結果發現碘離子在NC5表面的脫附過程為整個還原反應的速率決定步驟,其碘分子脫附過程與常用的白金電極表面 (Pt (111)表面) 相比,計算結果說明氮摻雜石墨烯表面在負電場效應影響下,碘離子更容易從NC5表面脫離並擴散到電解液中。
此外,本研究第三部分使用理論計算探討不同濃度的摻雜元素對於石墨烯導電度的影響,並探討其生成熱 (formation energy) 大小,進一步分析含硼(B-doped)、氮(N-doped)以及硼氮共摻雜(B-N co-doped)石墨烯的熱穩定性。計算結果顯示硼(較低的電負性)和氮(較高的電負性)原子共摻雜可以產生獨特的電子結構,並在雜原子之間產生協同耦合作用,從而有助於電子構型的微小變化並減小帶隙。此外,硼氮共摻雜石墨烯的生成熱與硼摻雜和氮摻雜石墨烯相比也相對低很多,當摻雜濃度達到33.3% 時,硼氮共摻雜石墨烯的生成熱也只有約0.3 eV。綜觀上述,硼氮共摻雜石墨烯擁有好的導電性和熱穩定性,比起單一元素摻雜石墨烯更適合當作對電極材料。另外,我額外探討電荷效應對於碘分子在硼氮共摻雜石墨烯(BNG)表面上的吸附和分解過程,利用理論計算完整且深入的探討碘分子在電極表面上吸附前後的電子結構變化、電荷改變量以及I3-還原反應的動力學模擬。計算結果指出,帶負電的BNG表面上I-I鍵斷裂的活化在熱力學和動力學上都更加有利。此外,碘分子得到電子解離後,對於未帶電系統,碘離子能夠輕易地從帶負電的BNG表面上脫附,計算結果顯示電荷效應對於碘離子的脫附步驟有著顯著的影響。
除了探討電場效應和電荷效應,在本研究中的第四部分探討多層石墨烯對於對於碘分子在BNG表面上的吸附和分解的影響。計算結果顯示硼氮共摻雜的多層石墨烯比單層石墨烯更適合應用在對電極材料,因為硼氮共摻雜的多層石墨烯擁有更好的導電性和熱穩定性。此外,研究結果也指出碘分子在多層BNG表面上的解離反應在熱力學和動力學上也都非常有利。硼氮共摻雜石墨烯除了上述提到擁有良好的導電性和熱穩定性外,與低電荷密度白金表面相比,碘離子能夠更輕易地從低電荷密度的BNG表面上脫附,且脫附能僅有0.25 eV,此結果使BNG表面具有更多優點取代白金對電極,尤其是將其應用在室內光的光電轉換裝置中。
本研究第五部分也探討多硫化物電解質(Sn, n =2-8)在QDSCs中的還原分解反應。利用理論計算分析其在電荷效應的影響下,多硫化物電解質在BNG表面上的吸附和還原分解的變化。計算結果顯示多硫化物電解質可以穩定地吸附在BNG表面上,且大部分的多硫化物電解質皆可以分解成負一價的陰離子(Sn-1)和負二價的陰離子(Sn-2),其中以形成S2-1, S3-1 和 S4-1陰離子為強烈的放熱反應。因此可以得知硼氮共摻雜石墨烯也適合應用在量子點電池中,並取代傳統常用的對電極材料。
此外,本研究也集結上述對於多硫化物和對電極材料的研究知識,並將其應用在鋰硫電池的陰極材料中。在本研究的第六部分中,利用理論計算探討含氮陰極材料 (polyacrylonitrile, cPAN) 與多硫化物的作用關係,並計算硫化物 (S2) 在cPAN表面上生成碳硫鍵和氮硫鍵的反應機制。計算結果顯示,碳硫鍵的生成為熱力學控制;氮硫鍵的生成為動力學控制。藉由理論計算和實驗數據 (固態核磁共振光譜和X射線光電子能譜) 的結合,提出許多有力證據來合理解釋多硫化物與含氮陰極材料中形成的氮硫鍵。本研究綜述了電場效應和電荷效應和層狀結構對於摻雜石墨烯的影響,為進一步探究其在DSSCs和QDSCs中的對電極應用提供借鏡,並對於鋰硫電池中的含氮陰極材料提出重要且創新的結果與發現。然而也期許藉由理論計算的輔助,可以為當代材料製程科技帶來更多重要且實惠的資訊。


The main challenges in solving the increasing worldwide energy demand are energy harvesting from clean and renewable energy sources and achieving a sustainable low carbon society. In recent years, photovoltaic systems, such as dye-sensitized solar cells (DSSCs) and quantum dots solar cells (QDSCs), have been rapidly developed due to their low processing cost and minimum environmental impacts. A thorough understanding of the critical process occurring in DSSCs and QDSCs by computational or experimental approach will help to develop these devices with better performance. Counter-electrode (CE) plays a key role by catalyzing the reduction of the redox species in improving their performance. In this context, this doctoral thesis presents computational investigations of problems related to designing efficient carbon-based materials for the alternate substitution of expensive noble Pt CEs.
The influence of an external electric field on the performance of graphene-based counter electrodes (CE) materials such as pristine, boron-doped graphene (BC5) and nitrogen-doped graphene (NC5) for DSSCs have explored using density functional theory (DFT) calculations. It is demonstrated that the excellent catalytic property of the NC5 graphene sheet towards I2 dissociation and I* atom desorption makes it an alternative non-metallic counter electrode for the DSSCs. The possibilities of B-doped, N-doped, and B-N co-doped graphene sheets to replace the Pt CEs have explored on the basis of bandgaps, formation energies, and regions of charge-induced impurities and observed that the B-N co-doped graphene (BNG) is suitable for CE due to its small bandgap, small formation energy, and appropriate region of charge-induced impurities. Also, the reduction reactions of the I2 molecule on the negatively charged BNG sheet is studied. After injecting two extra electrons, the I2 molecule can strongly adsorb on the BNG surface, and the I2 decomposition can be achieved with small activation energy.
The effects of layers (Single/Multiple) of BNG sheets on the electronic properties and the catalytic activity have been investigated. The calculations pointed out that the ML-BNG is more suitable for CE due to its higher electrical conductivity and small formation energy. The desorption of adsorbed I* atom can be easily achieved from the BNG sheets with a lower charge density. Similarly, the reduction and dissociation reactions of polysulfide (Sn) molecules on the BNG sheets for QDSCs are also investigated. The excellent electrocatalytic activity of the BNG sheet towards the reduction and dissociation reaction for I2 molecule and polysulfide Sn molecules makes it an alternative Pt-free CE in DSSCs and QDSCs.
Nowadays, the global energy demand and consumption have increased dramatically due to the continuous economic and population growth. Lithium-sulfur (Li-S) batteries have attracted one of the most promising energy storage systems because of their high theoretical capacity and energy density. Sulfurized-polyacrylonitrile (S-cPAN) has been recognized as the most promising cathode material for Li-S batteries because of its ultra-stable cycling performance and high sulfur utilization. Although the synthetic conditions and modification of S-cPAN have been extensively studied, understanding the molecular structure of S-cPAN remains unclear. Herein, a more reasonable molecular structure consisting of pyridinic/pyrrolic nitrogen (NPD/NPL) is proposed. This theoretical study supports the experimental results of Prof. Bing Joe Hwang’s group to understand S-cPAN.

摘要 ABSTRACT Acknowledgments List of Tables List of Figures Chapter 1. Introduction 1.1 Background 1.2 Overview of Dye-Sensitized Solar cells 1.2.1 Components of DSSCs 1.2.2 Conductive Glass Substrate 1.2.3 Photoanode 1.2.4 Dyes 1.2.5 Electrolytes 1.2.6 Working Principle of DSSCs 1.3 Overview of Quantum Dots Solar cells 1.3.1 Components of QDSCs 1.3.2 QD sensitizers based on metal chalcogenides 1.3.3 Interface modification layers according to metal chalcogenides 1.3.4 Working Principle of QDSCs 1.4 Counter electrode in DSSCs and QDSCs 1.4.1 Carbon materials 1.4.2 Graphene as a counter electrode material 1.4.3 Nitrogen‐doped graphene in DSSCs 1.4.4 Boron‐doped graphene in DSSCs 1.4.5 Co‐doped graphene in DSSCs 1.5 Present Study Chapter 2. Effects of Electric Field on the Performance of Graphene Based Counter Electrodes for Dye-Sensitized Solar Cells 2.1 Introduction 2.2 Computational Details 2.3 Results and Discussion 2.3.1 I2 Adsorption 2.3.2 Effects of Electric Field on I2 /NC5 2.3.3 Electronic Properties of I2 /NC5 2.3.4 Effective Dipole Moment and Effective Polarizability Analysis 2.3.5 Electric Field Effects on the I- desorption 2.3.6 Negative Electric Field Effects on Iodine Reduction Reaction in DSSCs 2.4 Conclusions Chapter 3. Boron and Nitrogen co-Doped Graphene used as Counter Electrode for Iodine Reduction in Dye-Sensitized Solar Cells 3.1 Introduction 3.2 Computational Details 3.3 Results and Discussion 3.3.1 The electronic properties of Doped Graphene 3.3.2 I2 Adsorption on B-N Co-doped Graphene Sheet 3.3.3 Electronic Properties of I2 adsorbed on BNG sheet 3.3.4 Energetics of the I2 Reduction Reaction 3.4 Conclusions Chapter 4. Theoretical Study of Charge Effects on the Triiodide Reduction Reaction on Boron and Nitrogen Co-doped Multilayer Graphene 4.1 Introduction 4.2 Computational Details 4.3 Results and Discussion 4.3.1 The stability and electronic properties of doped multilayer graphene 4.3.2 I2 adsorption on SL-BNG and ML-BNG sheets 4.3.3 Electronic properties of I2/BNG 4.3.4 Energetics of the I2 Reduction Reaction 4.4 Conclusions Chapter 5. Boron and Nitrogen co-Doped Graphene as efficient counter electrode for polysulfide reduction in quantum dot-sensitized solar cells Introduction Computational Details Results and Discussion Charge-modulation effect on the polysulfide adsorption Thermodynamics of the radical anions Sn-1 and the dianions Sn-2 Conclusions Chapter 6. New insights into the N-S bond formation of sulfurized-polyacrylonitrile cathode material for Li-S batteries 6.1 Introduction 6.2 Computational Details 6.3 Results and Discussion 6.3.1 The molecular structures of cPAN and S-PAN 6.3.2 Energetics of N-S/C-S Bond Formation 6.3.3 Proposed Dominant Structure of S-cPAN 6.4 Conclusions Chapter 7. Summary REFERENCES APPENDICES

1. Bai, Y.; Mora-Seró, I.; De Angelis, F.; Bisquert, J.; Wang, P., Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chemical Reviews 2014, 114, 10095-10130.
2. Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G., Electrolytes in Dye-Sensitized Solar Cells. Chemical Reviews 2015, 115, 2136-2173.
3. Sovacool, B. K., National Context Drives Concerns. Nature Energy 2018, 3, 820-821.
4. Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y., Counter Electrodes in Dye-Sensitized Solar Cells. Chem. Soc. Rev. 2017, 46, 5975.
5. Herzog, H.; Golomb, D., Carbon Capture and Storage from Fossil Fuel Use. In Encyclopedia of Energy, Cleveland, C. J., Ed. Elsevier: New York, 2004; pp 277-287.
6. Edmonds, J.; Reilly, J., A Long-Term Global Energy- Economic Model of Carbon Dioxide Release from Fossil Fuel Use. Energy Economics 1983, 5, 74-88.
7. O'Neill, B.; Grübler, A.; Nakicenovic, N.; Obersteiner, M.; Riahi, K.; Schrattenholzer, L.; Toth, F., Planning for Future Energy Resources. Science 2003, 300, 581-584.
8. Barua, P.; Tawney, L.; Weischer, L., Delivering on the Clean Energy Economy: The Role of Policy in Developing Successful Domestic Solar and Wind Industries. World Resources Institute Working Paper). World Resources Institute. Retrieved from http://pdf. wri. org/delivering_clean_energy_economy. pdf 2012.
9. PVPS, I., Snapshot of Global Photovoltaic Markets; Report Iea Pvps T1-31. 2017. 2018.
10. Ahmed, U.; Alizadeh, M.; Rahim, N. A.; Shahabuddin, S.; Ahmed, M. S.; Pandey, A. K., A Comprehensive Review on Counter Electrodes for Dye Sensitized Solar Cells: A Special Focus on Pt-Tco Free Counter Electrodes. Solar Energy 2018, 174, 1097-1125.
11. Williams, R., Becquerel Photovoltaic Effect in Binary Compounds. The Journal of Chemical Physics 1960, 32, 1505-1514.
12. Chopra, K. L.; Paulson, P. D.; Dutta, V., Thin-Film Solar Cells: An Overview. Progress in Photovoltaics: Research and Applications 2004, 12, 69-92.
13. Jena, A.; Mohanty, S. P.; Kumar, P.; Naduvath, J.; Gondane, V.; Lekha, P.; Das, J.; Narula, H. K.; Mallick, S.; Bhargava, P., Dye Sensitized Solar Cells: A Review. Transactions of the Indian Ceramic Society 2012, 71, 1-16.
14. Ibn-Mohammed, T.; Koh, S. C. L.; Reaney, I. M.; Acquaye, A.; Schileo, G.; Mustapha, K. B.; Greenough, R., Perovskite Solar Cells: An Integrated Hybrid Lifecycle Assessment and Review in Comparison with Other Photovoltaic Technologies. Renewable and Sustainable Energy Reviews 2017, 80, 1321-1344.
15. Chu, S.; Majumdar, A., Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294-303.
16. Green, M. A., Recent Developments in Photovoltaics. Solar Energy 2004, 76, 3-8.
17. Badawy, W. A., A Review on Solar Cells from Si-Single Crystals to Porous Materials and Quantum Dots. Journal of Advanced Research 2015, 6, 123-132.
18. Shin, S. S.; Yang, W. S.; Noh, J. H.; Suk, J. H.; Jeon, N. J.; Park, J. H.; Kim, J. S.; Seong, W. M.; Seok, S. I., High-Performance Flexible Perovskite Solar Cells Exploiting Zn2sno4 Prepared in Solution Below 100 °C. Nature Communications 2015, 6, 7410.
19. Liu, D.; Kelly, T. L., Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nature Photonics 2014, 8, 133-138.
20. Razza, S.; Castro-Hermosa, S.; Carlo, A. D.; Brown, T. M., Research Update: Large-Area Deposition, Coating, Printing, and Processing Techniques for the Upscaling of Perovskite Solar Cell Technology. APL Materials 2016, 4, 091508.
21. Park, N.-G., Organometal Perovskite Light Absorbers toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. The Journal of Physical Chemistry Letters 2013, 4, 2423-2429.
22. Lee, Y.-L.; Chang, C.-H., Efficient Polysulfide Electrolyte for Cds Quantum Dot-Sensitized Solar Cells. Journal of Power Sources 2008, 185, 584-588.
23. Zhang, Q.; Zhang, Y.; Huang, S.; Huang, X.; Luo, Y.; Meng, Q.; Li, D., Application of Carbon Counterelectrode on Cds Quantum Dot-Sensitized Solar Cells (Qdsscs). Electrochemistry Communications 2010, 12, 327-330.
24. Karim, N. A.; Mehmood, U.; Zahid, H. F.; Asif, T., Nanostructured Photoanode and Counter Electrode Materials for Efficient Dye-Sensitized Solar Cells (Dsscs). Solar Energy 2019, 185, 165-188.
25. Iqbal, M. Z.; Nabi, J.-U.; Siddique, S.; Awan, H. T. A.; Haider, S. S.; Sulman, M., Role of Graphene and Transition Metal Dichalcogenides as Hole Transport Layer and Counter Electrode in Solar Cells. International Journal of Energy Research 2020, 44, 1464-1487.
26. Chang, Y.-C.; Tseng, C.-A.; Lee, C.-P.; Ann, S.-B.; Huang, Y.-J.; Ho, K.-C.; Chen, Y.-T., N- and S-Codoped Graphene Hollow Nanoballs as an Efficient Pt-Free Electrocatalyst for Dye-Sensitized Solar Cells. Journal of Power Sources 2020, 449, 227470.
27. Bockris, J., Electrochemistry of Cleaner Environments; Springer Science & Business Media, 2013.
28. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M., Combined Experimental and Dft-Tddft Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society 2005, 127, 16835-16847.
29. Theerthagiri, J.; Senthil, A. R.; Madhavan, J.; Maiyalagan, T., Recent Progress in Non-Platinum Counter Electrode Materials for Dye-Sensitized Solar Cells. ChemElectroChem 2015, 2, 928-945.
30. Muthuraaman, B.; Ganesan, S.; Paul, B. J.; Maruthamuthu, P.; Suthanthiraraj, S. A., Studies on Isomeric Effects of 2- and 4-Mercapto Pyridine as Dopants in Polymer Electrolyte in Dye-Sensitized Solar Cells. Electrochimica Acta 2011, 56, 5405-5409.
31. Ragoussi, M. E.; Ince, M.; Torres, T., Recent Advances in Phthalocyanine-Based Sensitizers for Dye-Sensitized Solar Cells. European Journal of Organic Chemistry 2013, 6475-6489.
32. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-Sensitized Solar Cells. Chemical Reviews 2010, 110, 6595-6663.
33. Iqbal, Z.; Wu, W. Q.; Kuang, D. B.; Wang, L.; Meier, H.; Cao, D., Phenothiazine-Based Dyes with Bilateral Extension of Π-Conjugation for Efficient Dye-Sensitized Solar Cells. Dyes and Pigments 2013, 96, 722-731.
34. Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y., Counter Electrodes in Dye-Sensitized Solar Cells. Chem. Soc. Rev. 2017, 46, 5975-6023.
35. Zhang, T.; Liu, Y.; Yun, S., Recent Advances in Counter Electrodes for Thiolate-Mediated Dye-Sensitized Solar Cells. Isr. J. Chem. 2015, 55, 943-954.
36. Fang, X.; Ma, T.; Guan, G.; Akiyama, M.; Kida, T.; Abe, E., Effect of the Thickness of the Pt Film Coated on a Counter Electrode on the Performance of a Dye-Sensitized Solar Cell. J. Electroanal. Chem. 2004, 570, 257-263.
37. Raj, C. C.; Prasanth, R., A Critical Review of Recent Developments in Nanomaterials for Photoelectrodes in Dye Sensitized Solar Cells. Journal of Power Sources 2016, 317, 120-132.
38. Zhang, J.; Hao, Y.; Yang, L.; Mohammadi, H.; Vlachopoulos, N.; Sun, L.; Hagfeldt, A.; sheibani, E., Electrochemically Polymerized Poly (3, 4-Phenylenedioxythiophene) as Efficient and Transparent Counter Electrode for Dye Sensitized Solar Cells. Electrochim. Acta 2019, 300, 482-488.
39. Li, J.; Yun, S.; Zhou, X.; Hou, Y.; Fang, W.; Zhang, T.; Liu, Y., Incorporating Transition Metals (Ta/Co) into Nitrogen-Doped Carbon as Counter Electrode Catalysts for Dye-Sensitized Solar Cells. Carbon 2018, 126, 145.
40. Wu, K.; Chen, L.; Sun, X.; Wu, M., Transition-Metal-Modified Polyaniline Nanofiber Counter Electrode for Dye-Sensitized Solar Cells. 2016, 3, 1922-1926.
41. Yuan, H.; Jiao, Q.; Liu, J.; Liu, X.; Li, Y.; Shi, D.; Wu, Q.; Zhao, Y.; Li, H., Facile Synthesis of Co0.85se Nanotubes/Reduced Graphene Oxide Nanocomposite as Pt-Free Counter Electrode with Enhanced Electrocatalytic Performance in Dye-Sensitized Solar Cells. Carbon 2017, 122, 381-388.
42. Huang, Z.; Liu, X.; Li, K.; Li, D.; Luo, Y.; Li, H.; Song, W.; Chen, L.; Meng, Q., Application of Carbon Materials as Counter Electrodes of Dye-Sensitized Solar Cells. Electrochemistry Communications 2007, 9, 596-598.
43. Lee, W. J.; Ramasamy, E.; Lee, D. Y.; Song, J. S., Performance Variation of Carbon Counter Electrode Based Dye-Sensitized Solar Cell. Sol. Energy Mater. Sol. Cells 2008, 92, 814-818.
44. Li, C.-T.; Lee, C.-T.; Li, S.-R.; Lee, C.-P.; Chiu, I. T.; Vittal, R.; Wu, N.-L.; Sun, S.-S.; Ho, K.-C., Composite Films of Carbon Black Nanoparticles and Sulfonated-Polythiophene as Flexible Counter Electrodes for Dye-Sensitized Solar Cells. J. Power Sources 2016, 302, 155-163.
45. Monreal-Bernal, A.; Vilatela, J. J.; Costa, R. D., Cnt Fibres as Dual Counter-Electrode/Current-Collector in Highly Efficient and Stable Dye-Sensitized Solar Cells. Carbon 2019, 141, 488-496.
46. Zheng, L.; Bao, C.; Lei, S.; Wang, J.; Li, F.; Sun, P.; Huang, N.; Fang, L.; Sun, X., In Situ Growing Cnts Encapsulating Nickel Compounds on Ni Foils with Ethanol Flame Method as Superior Counter Electrodes of Dye-Sensitized Solar Cells. Carbon 2018, 133, 423-434.
47. Chen, J.-Z.; Wang, C.; Hsu, C.-C.; Cheng, I. C., Ultrafast Synthesis of Carbon-Nanotube Counter Electrodes for Dye-Sensitized Solar Cells Using an Atmospheric-Pressure Plasma Jet. Carbon 2016, 98, 34-40.
48. Zhang, D. W.; Li, X. D.; Li, H. B.; Chen, S.; Sun, Z.; Yin, X. J.; Huang, S. M., Graphene-Based Counter Electrode for Dye-Sensitized Solar Cells. Carbon 2011, 49, 5382-5388.
49. Xue, Y.; Liu, J.; Chen, H.; Wang, R.; Li, D.; Qu, J.; Dai, L., Nitrogen-Doped Graphene Foams as Metal-Free Counter Electrodes in High-Performance Dye-Sensitized Solar Cells. 2012, 51, 12124-12127.
50. Hou, S.; Cai, X.; Wu, H.; Yu, X.; Peng, M.; Yan, K.; Zou, D., Nitrogen-Doped Graphene for Dye-Sensitized Solar Cells and the Role of Nitrogen States in Triiodide Reduction. Energy Environ. Sci. 2013, 6, 3356-3362.
51. Chandiran, A. K.; Yella, A.; Stefik, M.; Heiniger, L.-P.; Comte, P.; Nazeeruddin, M. K.; Grätzel, M., Low-Temperature Crystalline Titanium Dioxide by Atomic Layer Deposition for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2013, 5, 3487-3493.
52. Haggerty, J. E. S., et al., High-Fraction Brookite Films from Amorphous Precursors. Scientific Reports 2017, 7, 15232.
53. Karthick, S.; Hemalatha, K.; Balasingam, S. K.; Manik Clinton, F.; Akshaya, S.; Kim, H. J., Dye‐Sensitized Solar Cells: History, Components, Configuration, and Working Principle. Interfacial Engineering in Functional Materials for Dye‐Sensitized Solar Cells 2019, 1-16.
54. Gong, J.; Liang, J.; Sumathy, K., Review on Dye-Sensitized Solar Cells (Dsscs): Fundamental Concepts and Novel Materials. Renewable and Sustainable Energy Reviews 2012, 16, 5848-5860.
55. Emin, S.; Singh, S. P.; Han, L.; Satoh, N.; Islam, A., Colloidal Quantum Dot Solar Cells. Solar Energy 2011, 85, 1264-1282.
56. Hetsch, F.; Xu, X.; Wang, H.; Kershaw, S. V.; Rogach, A. L., Semiconductor Nanocrystal Quantum Dots as Solar Cell Components and Photosensitizers: Material, Charge Transfer, and Separation Aspects of Some Device Topologies. The Journal of Physical Chemistry Letters 2011, 2, 1879-1887.
57. Wang, D.; Yin, F.; Du, Z.; Han, D.; Tang, J., Recent Progress in Quantum Dot-Sensitized Solar Cells Employing Metal Chalcogenides. Journal of Materials Chemistry A 2019, 7, 26205-26226.
58. Kwon, W.; Kim, Y.-H.; Lee, C.-L.; Lee, M.; Choi, H. C.; Lee, T.-W.; Rhee, S.-W., Electroluminescence from Graphene Quantum Dots Prepared by Amidative Cutting of Tattered Graphite. Nano Letters 2014, 14, 1306-1311.
59. Tsai, M.-L.; Wei, W.-R.; Tang, L.; Chang, H.-C.; Tai, S.-H.; Yang, P.-K.; Lau, S. P.; Chen, L.-J.; He, J.-H., Si Hybrid Solar Cells with 13% Efficiency Via Concurrent Improvement in Optical and Electrical Properties by Employing Graphene Quantum Dots. ACS Nano 2016, 10, 815-821.
60. Liu, X.; Na, W.; Liu, H.; Su, X., Fluorescence Turn-Off-on Probe Based on Polypyrrole/Graphene Quantum Composites for Selective and Sensitive Detection of Paracetamol and Ascorbic Acid. Biosensors and Bioelectronics 2017, 98, 222-226.
61. Kim, C. O., et al., High-Performance Graphene-Quantum-Dot Photodetectors. Scientific Reports 2014, 4, 5603.
62. Chao, D., et al., Graphene Quantum Dots Coated Vo2 Arrays for Highly Durable Electrodes for Li and Na Ion Batteries. Nano Letters 2015, 15, 565-573.
63. Seo, H.; Wang, Y.; Uchida, G.; Kamataki, K.; Itagaki, N.; Koga, K.; Shiratani, M., Analysis on the Effect of Polysulfide Electrolyte Composition for Higher Performance of Si Quantum Dot-Sensitized Solar Cells. Electrochimica Acta 2013, 95, 43-47.
64. Hanna, M. C.; Nozik, A. J., Solar Conversion Efficiency of Photovoltaic and Photoelectrolysis Cells with Carrier Multiplication Absorbers. Journal of Applied Physics 2006, 100, 074510.
65. Lin, Y.; Song, H.; Rao, H.; Du, Z.; Pan, Z.; Zhong, X., Mof-Derived Co,N Codoped Carbon/Ti Mesh Counter Electrode for High-Efficiency Quantum Dot Sensitized Solar Cells. The Journal of Physical Chemistry Letters 2019, 10, 4974-4979.
66. Hodes, G., Comparison of Dye- and Semiconductor-Sensitized Porous Nanocrystalline Liquid Junction Solar Cells. The Journal of Physical Chemistry C 2008, 112, 17778-17787.
67. Barea, E. M.; Shalom, M.; Giménez, S.; Hod, I.; Mora-Seró, I.; Zaban, A.; Bisquert, J., Design of Injection and Recombination in Quantum Dot Sensitized Solar Cells. Journal of the American Chemical Society 2010, 132, 6834-6839.
68. Kokal, R. K.; Deepa, M.; Kalluri, A.; Singh, S.; Macwan, I.; Patra, P. K.; Gilarde, J., Solar Cells with Pbs Quantum Dot Sensitized Tio2–Multiwalled Carbon Nanotube Composites, Sulfide-Titania Gel and Tin Sulfide Coated C-Fabric. Physical Chemistry Chemical Physics 2017, 19, 26330-26345.
69. Yu, J.; Wang, W.; Pan, Z.; Du, J.; Ren, Z.; Xue, W.; Zhong, X., Quantum Dot Sensitized Solar Cells with Efficiency over 12% Based on Tetraethyl Orthosilicate Additive in Polysulfide Electrolyte. Journal of Materials Chemistry A 2017, 5, 14124-14133.
70. Chebrolu, V. T.; Kim, H.-J., Recent Progress in Quantum Dot Sensitized Solar Cells: An Inclusive Review of Photoanode, Sensitizer, Electrolyte, and the Counter Electrode. Journal of Materials Chemistry C 2019, 7, 4911-4933.
71. Rühle, S.; Shalom, M.; Zaban, A., Quantum-Dot-Sensitized Solar Cells. ChemPhysChem 2010, 11, 2290-2304.
72. Lin, Z.; Wang, J., Low-Cost Nanomaterials: Toward Greener and More Efficient Energy Applications; Springer, 2014.
73. Zhu, H.; Guo, W.; Jiang, R.; Zhao, L.; Lu, X.; Li, M.; Fu, D.; Shan, H., Decomposition of Methanthiol on Pt(111): A Density Functional Investigation. Langmuir 2010, 26, 12017.
74. Tian, F.; Jinnouchi, R.; Anderson, A. B., How Potentials of Zero Charge and Potentials for Water Oxidation to Oh(Ads) on Pt(111) Electrodes Vary with Coverage. J. Phys. Chem. C 2014, 113, 17484.
75. Tang, H.; Trout, B. L., No Chemisorption on Pt(111), Rh/Pt(111), and Pd/Pt(111). J. Phys. Chem. B 2005, 109, 17630.
76. Morin, C.; Simon, D.; Sautet, P., Trends in the Chemisorption of Aromatic Molecules on a Pt(111) Surface: Benzene, Naphthalene, and Anthracene from First Principles Calculations. J. Phys. Chem. B 2004, 108, 12084.
77. Ou, L. H.; Yang, F.; Liu, Y. W.; Chen, S. L., First-Principle Study of the Adsorption and Dissociation of O2 on Pt(111) in Acidic Media. J. Phys. Chem. C 2009, 113, 20657.
78. Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y., Counter Electrodes in Dye-Sensitized Solar Cells. Chem. Soc. Rev. 2017, 46, 5975-6023.
79. Wu, M.; Ma, T., Platinum-Free Catalysts as Counter Electrodes in Dye-Sensitized Solar Cells. ChemSusChem 2012, 5, 1343-57.
80. Yang, L.; Wu, L.; Wu, M.; Xin, G.; Lin, H.; Ma, T., High-Efficiency Flexible Dye-Sensitized Solar Cells Fabricated by a Novel Friction-Transfer Technique. Electrochem. Commun. 2010, 12, 1000.
81. Hu, C.; Dai, L., Carbon-Based Metal-Free Catalysts for Electrocatalysis Beyond the Orr. Angew. Chem. Int. Ed. 2016, 55, 11736-58.
82. Wu, M.; Zhang, Q.; Xiao, J.; Ma, C.; Lin, X.; Miao, C.; He, Y.; Gao, Y.; Hagfeldt, A.; Ma, T., Two Flexible Counter Electrodes Based on Molybdenum and Tungsten Nitrides for Dye-Sensitized Solar Cells. J. Mater. Chem. 2011, 21, 10761.
83. Zhu, H.; Wei, J.; Wang, K.; Wu, D., Applications of Carbon Materials in Photovoltaic Solar Cells. Sol. Energy Mater. Sol. Cells 2009, 93, 1461.
84. Murakami, T. N., et al., Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes. J. Electrochem. Soc. 2006, 153, A2255.
85. Han, J.; Kim, H. K.; Kim, D. Y.; Jo, S. M.; Jang, S. Y., Water-Soluble Polyelectrolyte-Grafted Multiwalled Carbon Nanotube Thin Films for Efficient Counter Electrode of Dye-Sensitized Solar Cells. ACS Nano 2010, 4, 3503.
86. Taya, S.; Kuwahara, S.; Shen, Q.; Toyoda, T.; Katayama, K., Role of Lithium and Co-Existing Cations in Electrolyte to Improve Performance of Dye-Sensitized Solar Cells. RSC Adv. 2014, 4, 21517.
87. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385-388.
88. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308-1308.
89. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669.
90. Huang, Z.; Liu, X.; Li, K.; Li, D.; Luo, Y.; Li, H.; Song, W.; Chen, L.; Meng, Q., Application of Carbon Materials as Counter Electrodes of Dye-Sensitized Solar Cells. Electrochem. Commun. 2007, 9, 596.
91. Fang, B.; Fan, S. Q.; Kim, J. H.; Kim, M. S.; Kim, M.; Chaudhari, N. K.; Ko, J.; Yu, J. S., Incorporating Hierarchical Nanostructured Carbon Counter Electrode into Metal-Free Organic Dye-Sensitized Solar Cell. Langmuir 2010, 26, 11238.
92. Wang, G.; Huang, C.; Xing, W.; Zhuo, S., Micro-Meso Hierarchical Porous Carbon as Low-Cost Counter Electrode for Dye-Sensitized Solar Cells. Electrochim. Acta 2011, 56, 5459.
93. Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L., Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 2010, 4, 1321-1326.
94. Tan, X.; Tahini, H. A.; Smith, S. C., P-Doped Graphene/Graphitic Carbon Nitride Hybrid Electrocatalysts: Unraveling Charge Transfer Mechanisms for Enhanced Hydrogen Evolution Reaction Performance. ACS Catal. 2016, 6, 7071-7077.
95. Imoto, K.; Takahashi, K.; Yamaguchi, T.; Komura, T.; Nakamura, J. I.; Murata, K., High-Performance Carbon Counter Electrode for Dye-Sensitized Solar Cells. Sol. Energy Mater. Sol. Cells 2003, 79, 459.
96. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S., The Structure of Suspended Graphene Sheets. Nature 2007, 446, 60-63.
97. Zhu, W. J.; Perebeinos, V.; Freitag, M.; Avouris, P., Carrier Scattering, Mobilities, and Electrostatic Potential in Monolayer, Bilayer, and Trilayer Graphene. Physical Review B 2009, 80, 8.
98. Lu, M. N.; Chang, C. Y.; Wei, T. C.; Lin, J. Y., Recent Development of Graphene-Based Cathode Materials for Dye-Sensitized Solar Cells. J. Nanomater. 2016, 2016, 21.
99. Ngidi, N. P. D.; Ollengo, M. A.; Nyamori, V. O., Heteroatom-Doped Graphene and Its Application as a Counter Electrode in Dye-Sensitized Solar Cells. International Journal of Energy Research 2019, 43, 1702-1734.
100. Roy-Mayhew, J. D.; Bozym, D. J.; Punckt, C.; Aksay, I. A., Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. Acs Nano 2010, 4, 6203-6211.
101. Hardin, B. E.; Snaith, H. J.; McGehee, M. D., The Renaissance of Dye-Sensitized Solar Cells. Nature Photonics 2012, 6, 162-169.
102. Biddinger, E. J.; von Deak, D.; Ozkan, U. S., Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts. Top. Catal. 2009, 52, 1566-1574.
103. Zhang, M.; Dai, L. M., Carbon Nanomaterials as Metal-Free Catalysts in Next Generation Fuel Cells. Nano Energy 2012, 1, 514-517.
104. Xue, Y. H.; Liu, J.; Chen, H.; Wang, R. G.; Li, D. Q.; Qu, J.; Dai, L. M., Nitrogen-Doped Graphene Foams as Metal-Free Counter Electrodes in High-Performance Dye-Sensitized Solar Cells. Angew. Chem.-Int. Edit. 2012, 51, 12124-12127.
105. Wang, G. Q.; Fang, Y. Y.; Lin, Y.; Xing, W.; Zhuo, S. P., Nitrogen-Doped Graphene as Transparent Counter Electrode for Efficient Dye-Sensitized Solar Cells. Mater. Res. Bull. 2012, 47, 4252-4256.
106. Hou, S. C.; Cai, X.; Wu, H. W.; Yu, X.; Peng, M.; Yan, K.; Zou, D. C., Nitrogen-Doped Graphene for Dye-Sensitized Solar Cells and the Role of Nitrogen States in Triiodide Reduction. Energy & Environmental Science 2013, 6, 3356-3362.
107. Yen, M. Y.; Hsieh, C. K.; Teng, C. C.; Hsiao, M. C.; Liu, P. I.; Ma, C. C. M.; Tsai, M. C.; Tsai, C. H.; Lin, Y. R.; Chou, T. Y., Metal-Free, Nitrogen-Doped Graphene Used as a Novel Catalyst for Dye-Sensitized Solar Cell Counter Electrodes. Rsc Advances 2012, 2, 2725-2728.
108. Ju, M. J., et al., N-Doped Graphene Nanoplatelets as Superior Metal-Free Counter Electrodes for Organic Dye-Sensitized Solar Cells. Acs Nano 2013, 7, 5243-5250.
109. Ju, M. J., et al., Graphene Nanoplatelets Doped with N at Its Edges as Metal-Free Cathodes for Organic Dye-Sensitized Solar Cells. Advanced Materials 2014, 26, 3055-3062.
110. Lin, C. A.; Lee, C. P.; Ho, S. T.; Wei, T. C.; Chi, Y. W.; Huang, K. P.; He, J. H., Nitrogen-Doped Graphene/Platinum Counter Electrodes for Dye-Sensitized Solar Cells. ACS Photonics 2014, 1, 1264-1269.
111. Agnoli, S.; Favaro, M., Doping Graphene with Boron: A Review of Synthesis Methods, Physicochemical Characterization, and Emerging Applications. Journal of Materials Chemistry A 2016, 4, 5002-5025.
112. Tang, Y. B., et al., Tunable Band Gaps and P-Type Transport Properties of Boron-Doped Graphenes by Controllable Ion Doping Using Reactive Microwave Plasma. Acs Nano 2012, 6, 1970-1978.
113. Zhao, L. Y., et al., Local Atomic and Electronic Structure of Boron Chemical Doping in Monolayer Graphene. Nano Letters 2013, 13, 4659-4665.
114. Fang, H. Q.; Yu, C.; Ma, T. L.; Qiu, J. S., Boron-Doped Graphene as a High-Efficiency Counter Electrode for Dye-Sensitized Solar Cells. Chemical Communications 2014, 50, 3328-3330.
115. Jung, S. M.; Choi, I. T.; Lim, K.; Ko, J.; Kim, J. C.; Lee, J. J.; Ju, M. J.; Kim, H. K.; Baek, J. B., B-Doped Graphene as an Electrochemically Superior Metal-Free Cathode Material as Compared to Pt over a Co(Ii)/Co(Iii) Electrolyte for Dye-Sensitized Solar Cell. Chemistry of Materials 2014, 26, 3586-3591.
116. Yu, H. T.; Zhang, B. W.; Bulin, C. K.; Li, R. H.; Xing, R. G., High-Efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Scientific Reports 2016, 6, 7.
117. Sharma, R.; Khan, S.; Goyal, V.; Sharma, V.; Sharma, K. S., Investigation on Effect of Boron and Nitrogen Substitution on Electronic Structure of Graphene. FlatChem 2017, 1, 20-33.
118. Ma, L.; Hart, A. H. C.; Ozden, S.; Vajtai, R.; Ajayan, P. M., Spiers Memorial Lecture Advances of Carbon Nanomaterials. Faraday Discuss. 2014, 173, 9-46.
119. Wang , S.; Iyyamperumal , E.; Roy, A.; Xue, Y.; Yu, D.; Dai, L., Vertically Aligned Bcn Nanotubes as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction: A Synergetic Effect by Co-Doping with Boron and Nitrogen. Angew. Chem. Int. Ed. 2011, 50, 11756-11760.
120. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M., Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers. Nat. Chem. 2014, 6, 242.
121. Hu, C.; Liu, D.; Xiao, Y.; Dai, L., Functionalization of Graphene Materials by Heteroatom-Doping for Energy Conversion and Storage. Prog. Nat. Sci.: Mater. Int. 2018, 28, 121.
122. Thomas, S.; Deepak, T. G.; Anjusree, G. S.; Arun, T. A.; Nair, S. V.; Nair, A. S., A Review on Counter Electrode Materials in Dye-Sensitized Solar Cells. J. Mater. Chem. A 2014, 2, 4474.
123. Olsen, E.; Hagen, G.; Eric Lindquist, S., Dissolution of Platinum in Methoxy Propionitrile Containing Lii/I2. Sol. Energy Mater. Sol. Cells 2000, 63, 267-273.
124. Yang, Z.; Tian, J.; Yin, Z.; Cui, C.; Qian, W.; Wei, F., Carbon Nanotube- and Graphene-Based Nanomaterials and Applications in High-Voltage Supercapacitor: A Review. Carbon 2019, 141, 467-480.
125. Wang, H.; Hu, Y. H., Graphene as a Counter Electrode Material for Dye-Sensitized Solar Cells. Energy & Environmental Science 2012, 5, 8182-8188.
126. Luo, Q.; Hao, F.; Wang, S.; Shen, H.; Zhao, L.; Li, J.; Grätzel, M.; Lin, H., Highly Efficient Metal-Free Sulfur-Doped and Nitrogen and Sulfur Dual-Doped Reduced Graphene Oxide Counter Electrodes for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2014, 118, 17010-17018.
127. Chen, J.-F.; Mao, Y.; Wang, H.-F.; Hu, P., Theoretical Study of Heteroatom Doping in Tuning the Catalytic Activity of Graphene for Triiodide Reduction. ACS Catal. 2016, 6, 6804-6813.
128. Fang, H.; Yu, C.; Ma, T.; Qiu, J., Boron-Doped Graphene as a High-Efficiency Counter Electrode for Dye-Sensitized Solar Cells. Chem. Commun. 2014, 50, 3328-3330.
129. Lin, K.-Y.; Nguyen, M. T.; Waki, K.; Jiang, J.-C., Boron and Nitrogen Co-Doped Graphene Used as Counter Electrode for Iodine Reduction in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2018, 122, 26385-26392.
130. Rani, P.; Jindal, V. K., Designing Band Gap of Graphene by B and N Dopant Atoms. RSC Adv. 2013, 3, 802-812.
131. Xue, Y.; Baek, J. M.; Chen, H.; Qu, J.; Dai, L., N-Doped Graphene Nanoribbons as Efficient Metal-Free Counter Electrodes for Disulfide/Thiolate Redox Mediated Dsscs. Nanoscale 2015, 7, 7078-7083.
132. Davis, V. K.; Sampaio, R. N.; Marquard, S. L.; Meyer, G. J., Electric Fields Detected on Dye-Sensitized Tio2 Interfaces: Influence of Electrolyte Composition and Ruthenium Polypyridyl Anchoring Group Type. J. Phys. Chem. C 2018, 122, 12712-12722.
133. Che, F.; Gray, J. T.; Ha, S.; Kruse, N.; Scott, S. L.; McEwen, J.-S., Elucidating the Roles of Electric Fields in Catalysis: A Perspective. ACS Catal. 2018, 8, 5153-5174.
134. Che, F.; Gray, J. T.; Ha, S.; McEwen, J.-S., Catalytic Water Dehydrogenation and Formation on Nickel: Dual Path Mechanism in High Electric Fields. J. Catal. 2015, 332, 187-200.
135. Yeh, C.-H.; Pham, T. M. L.; Nachimuthu, S.; Jiang, J.-C., Effect of External Electric Field on Methane Conversion on Iro2(110) Surface: A Density Functional Theory Study. ACS Catal. 2019, 9, 8230-8242.
136. Rawal, S. H.; McKee, W. C.; Xu, Y., Estimation of Electric Field Effects on the Adsorption of Molecular Superoxide Species on Au Based on Density Functional Theory. Phys. Chem. Chem. Phys. 2017, 19, 32626-32635.
137. Kresse, G.; Hafner, J., Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal--Amorphous-Semiconductor Transition in Germanium. Physical Review B 1994, 49, 14251-14269.
138. Kresse, G.; Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B 1996, 54, 11169-11186.
139. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77, 3865-3868.
140. Klimeš, J.; Bowler, D. R.; Michaelides, A., Chemical Accuracy for the Van Der Waals Density Functional. Journal of Physics: Condensed Matter 2009, 22, 022201.
141. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. 2000, 113, 9901-9904.
142. Henkelman, G.; Jónsson, H., Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. 2000, 113, 9978-9985.
143. Naeini, J. G.; Way, B. M.; Dahn, J. R.; Irwin, J. C., Raman Scattering from Boron-Substituted Carbon Films. Phys. Rev. B 1996, 54, 144-151.
144. Tan, X.; Tahini, H. A.; Smith, S. C., Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and High-Capacity Hydrogen Storage. ACS Appl. Mater. Interfaces 2016, 8, 32815-32822.
145. Shi, Z.; Kutana, A.; Yakobson, B. I., How Much N-Doping Can Graphene Sustain? J. Phys. Chem. Lett. 2015, 6, 106-112.
146. Umeki, T.; Akaishi, A.; Ichikawa, A.; Nakamura, J., Anomalous Stabilization in Nitrogen-Doped Graphene. J. Phys. Chem. C 2015, 119, 6288-6292.
147. Neugebauer, J.; Scheffler, M., Adsorbate-Substrate and Adsorbate-Adsorbate Interactions of Na and K Adlayers on Al(111). Phys. Rev. B 1992, 46, 16067-16080.
148. Feibelman, P. J., Surface-Diffusion Mechanism Versus Electric Field: Pt/Pt(001). Phys. Rev. B 2001, 64, 125403.
149. Makov, G.; Payne, M. C., Periodic Boundary Conditions in Ab Initio Calculations. Phys. Rev. B 1995, 51, 4014-4022.
150. Choudhuri, I.; Patra, N.; Mahata, A.; Ahuja, R.; Pathak, B., B–N@Graphene: Highly Sensitive and Selective Gas Sensor. The Journal of Physical Chemistry C 2015, 119, 24827-24836.
151. Rudenko, A. N.; Keil, F. J.; Katsnelson, M. I.; Lichtenstein, A. I., Adsorption of Diatomic Halogen Molecules on Graphene: A Van Der Waals Density Functional Study. Physical Review B 2010, 82, 035427.
152. Tang, W.; Sanville, E.; Henkelman, G., A Grid-Based Bader Analysis Algorithm without Lattice Bias. Journal of Physics: Condensed Matter 2009, 21, 084204.
153. Heyrovska, R., Atomic Structures of Graphene, Benzene and Methane with Bond Lengths as Sums of the Single, Double and Resonance Bond Radii of Carbon. arXiv preprint arXiv 2008, 0804.4086.
154. Oldham, K. B., A Gouy–Chapman–Stern Model of the Double Layer at a (Metal)/(Ionic Liquid) Interface. J. Electroanal. Chem. 2008, 613, 131-138.
155. Filhol, J. S.; Doublet, M. L., Conceptual Surface Electrochemistry and New Redox Descriptors. J. Phys. Chem. C 2014, 118, 19023-19031.
156. Masumian, E.; Hashemianzadeh, S. M.; Nowroozi, A., Hydrogen Adsorption on Sic Nanotube under Transverse Electric Field. Phys. Lett. A 2014, 378, 2549-2552.
157. Sampaio, R. N.; O’Donnell, R. M.; Barr, T. J.; Meyer, G. J., Electric Fields Control Tio2(E–) + I3– → Charge Recombination in Dye-Sensitized Solar Cells. J. Phys. Chem. Lett. 2014, 5, 3265-3268.
158. Hou, Y.; Wang, D.; Yang, X. H.; Fang, W. Q.; Zhang, B.; Wang, H. F.; Lu, G. Z.; Hu, P.; Zhao, H. J.; Yang, H. G., Rational Screening Low-Cost Counter Electrodes for Dye-Sensitized Solar Cells. Nat. Commun. 2013, 4, 1583.
159. Zhang, B., et al., Facet-Dependent Catalytic Activity of Platinum Nanocrystals for Triiodide Reduction in Dye-Sensitized Solar Cells. Sci. Rep. 2013, 3, 1836.
160. Sharma, S.; Jain, K. K.; Sharma, A., Solar Cells: In Research and Applications—a Review. Mater. Sci. Appl. 2015, 6, 12.
161. Hu, C.; Liu, D.; Xiao, Y.; Dai, L., Functionalization of Graphene Materials by Heteroatom-Doping for Energy Conversion and Storage. Prog. Mater. Sci. 2018, 28, 121-132.
162. Qin, L.; Wang, L.; Yang, X.; Ding, R.; Zheng, Z.; Chen, X.; Lv, B., Synergistic Enhancement of Oxygen Reduction Reaction with Bc3 and Graphitic-N in Boron- and Nitrogen-Codoped Porous Graphene. J. Catal. 2018, 359, 242-250.
163. Liu, Q.; Li, Q.-S.; Lu, G.-Q.; Luo, J.-H.; Yang, L.-N.; Chen, S.-L.; Li, Z.-S., Theoretical Study on the Adsorption Mechanism of Iodine Molecule on Platinum Surface in Dye-Sensitized Solar Cells. Theor. Chem. Acc. 2013, 133.
164. Yu, C.; Fang, H.; Liu, Z.; Hu, H.; Meng, X.; Qiu, J., Chemically Grafting Graphene Oxide to B, N Co-Doped Graphene Via Ionic Liquid and Their Superior Performance for Triiodide Reduction. Nano Energy 2016, 25, 184-192.
165. Xue, Y.; Liu, J.; Chen, H.; Wang, R.; Li, D.; Qu, J.; Dai, L., Nitrogen-Doped Graphene Foams as Metal-Free Counter Electrodes in High-Performance Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed. 2012, 51, 12124-12127.
166. Hou, Y.; Wang, D.; Yang, X. H.; Fang, W. Q.; Zhang, B.; Wang, H. F.; Lu, G. Z.; Hu, P.; Zhao, H. J.; Yang, H. G., Rational Screening Low-Cost Counter Electrodes for Dye-Sensitized Solar Cells. Nat. Commun. 2013, 4, 1583.
167. Liu, Z.; Peng, F.; Wang, H.; Yu, H.; Tan, J.; Zhu, L., Novel Phosphorus-Doped Multiwalled Nanotubes with High Electrocatalytic Activity for O2 Reduction in Alkaline Medium. Catal. Comm. 2011, 16, 35-38.
168. Dai, L., Functionalization of Graphene for Efficient Energy Conversion and Storage. Acc. Chem. Res. 2013, 46, 31-42.
169. Dai, L.; Xue, Y.; Qu, L.; Choi, H.-J.; Baek, J.-B., Metal-Free Catalysts for Oxygen Reduction Reaction. Chem. Rev. 2015, 115, 4823-4892.
170. Zhang, J.; Dai, L., Heteroatom-Doped Graphitic Carbon Catalysts for Efficient Electrocatalysis of Oxygen Reduction Reaction. ACS Catal. 2015, 5, 7244-7253.
171. Tan, X.; Tahini, H. A.; Smith, S. C., Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and High-Capacity Hydrogen Storage. ACS Appl. Mater. Interfaces 2016, 8, 32815-32822.
172. Bakhshi, F.; Farhadian, N., Co-Doped Graphene Sheets as a Novel Adsorbent for Hydrogen Storage: Dft and Dft-D3 Correction Dispersion Study. ‎Int. J. Hydrog. Energy 2018, 43, 8355-8364.
173. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109-162.
174. Jiang, Q. G.; Ao, Z. M.; Jiang, Q., First Principles Study on the Hydrophilic and Conductive Graphene Doped with Al Atoms. Phys. Chem. Chem. Phys. 2013, 15, 10859-10865.
175. Sun, J.; Muruganathan, M.; Mizuta, H., Room Temperature Detection of Individual Molecular Physisorption Using Suspended Bilayer Graphene. Sci. Adv. 2016, 2, e1501518.
176. Kresse, G.; Hafner, J., Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B 1994, 49, 14251.
177. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865.
178. Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758.
179. Klimeš, J.; Bowler, D. R.; Michaelides, A., Chemical Accuracy for the Van Der Waals Density Functional. J. Phys.: Condens. Matter 2010, 22.
180. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000, 113, 9901-9904.
181. Tang, W.; Sanville, E.; Henkelman, G., A Grid-Based Bader Analysis Algorithm without Lattice Bias. J. Phys.: Condens. Matter 2009, 21, 084204.
182. Chang, C. K.; Kataria, S.; Kuo, C. C.; Ganguly, A.; Wang, B. Y.; Hwang, J. Y.; Huang, K. J.; Yang, W. H.; Wang, S. B.; Chuang, C. H., Band Gap Engineering of Chemical Vapor Deposited Graphene by in Situ Bn Doping. ACS Nano 2013, 7, 1333.
183. Xu, J.; Jang, S. K.; Lee, J.; Song, Y. J.; Lee, S., The Preparation of Bn-Doped Atomic Layer Graphene Via Plasma Treatment and Thermal Annealing. J. Phys. Chem. C 2014, 118, 22268.
184. Beniwal, S.; Hooper, J.; Miller, D. P.; Costa, P. S.; Chen, G.; Liu, S.-Y.; Dowben, P. A.; Sykes, E. C. H.; Zurek, E.; Enders, A., Graphene-Like Boron–Carbon–Nitrogen Monolayers. ACS Nano 2017, 11, 2486-2493.
185. Shinde, P. P.; Kumar, V., Direct Band Gap Opening in Graphene by Bn Doping: Ab Initio Calculations. Phys. Rev. B 2011, 84, 125401.
186. Averill, F. W.; Morris, J. R.; Cooper, V. R., Calculated Properties of Fully Hydrogenated Single Layers of Bn, Bc2n, and Graphene: Graphane and Its Bn-Containing Analogues. Phys. Rev. B 2009, 80, 195411.
187. Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z., Two-Step Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis. Angew. Chem. Int. Ed. 2013, 52, 3110-3116.
188. Thomas, S.; Deepak, T. G.; Anjusree, G. S.; Arun, T. A.; Nair, S. V.; Nair, A. S., A Review on Counter Electrode Materials in Dye-Sensitized Solar Cells. Journal of Materials Chemistry A 2014, 2, 4474-4490.
189. Samantaray, M. R.; Mondal, A. K.; Murugadoss, G.; Pitchaimuthu, S.; Das, S.; Bahru, R.; Mohamed, M. A., Synergetic Effects of Hybrid Carbon Nanostructured Counter Electrodes for Dye-Sensitized Solar Cells: A Review. Materials 2020, 13, 2779.
190. Tang, Q.; Duan, J.; Duan, Y.; He, B.; Yu, L., Recent Advances in Alloy Counter Electrodes for Dye-Sensitized Solar Cells. A Critical Review. Electrochimica Acta 2015, 178, 886-899.
191. Song, M. Y.; Chaudhari, K. N.; Park, J.; Yang, D.-S.; Kim, J. H.; Kim, M.-S.; Lim, K.; Ko, J.; Yu, J.-S., High Efficient Pt Counter Electrode Prepared by Homogeneous Deposition Method for Dye-Sensitized Solar Cell. Applied Energy 2012, 100, 132-137.
192. Yang, L.; Wu, L.; Wu, M.; Xin, G.; Lin, H.; Ma, T., High-Efficiency Flexible Dye-Sensitized Solar Cells Fabricated by a Novel Friction-Transfer Technique. Electrochemistry Communications 2010, 12, 1000-1003.
193. Hu, C.; Dai, L., Carbon-Based Metal-Free Catalysts for Electrocatalysis Beyond the Orr. Angew Chem Int Ed Engl 2016, 55, 11736-58.
194. Wu, M.; Zhang, Q.; Xiao, J.; Ma, C.; Lin, X.; Miao, C.; He, Y.; Gao, Y.; Hagfeldt, A.; Ma, T., Two Flexible Counter Electrodes Based on Molybdenum and Tungsten Nitrides for Dye-Sensitized Solar Cells. Journal of Materials Chemistry 2011, 21, 10761-10766.
195. Zhang, S.; Jin, J.; Li, D.; Fu, Z.; Gao, S.; Cheng, S.; Yu, X.; Xiong, Y., Increased Power Conversion Efficiency of Dye-Sensitized Solar Cells with Counter Electrodes Based on Carbon Materials. RSC Advances 2019, 9, 22092-22100.
196. Zhu, H.; Wei, J.; Wang, K.; Wu, D., Applications of Carbon Materials in Photovoltaic Solar Cells. Solar Energy Materials and Solar Cells 2009, 93, 1461-1470.
197. Murakami, T. N., et al., Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes. Journal of The Electrochemical Society 2006, 153, A2255.
198. Fang, B.; Fan, S.-Q.; Kim, J. H.; Kim, M.-S.; Kim, M.; Chaudhari, N. K.; Ko, J.; Yu, J.-S., Incorporating Hierarchical Nanostructured Carbon Counter Electrode into Metal-Free Organic Dye-Sensitized Solar Cell. Langmuir 2010, 26, 11238-11243.
199. Imoto, K.; Takahashi, K.; Yamaguchi, T.; Komura, T.; Nakamura, J.-i.; Murata, K., High-Performance Carbon Counter Electrode for Dye-Sensitized Solar Cells. Solar Energy Materials and Solar Cells 2003, 79, 459-469.
200. Tan, X.; Tahini, H. A.; Smith, S. C., P-Doped Graphene/Graphitic Carbon Nitride Hybrid Electrocatalysts: Unraveling Charge Transfer Mechanisms for Enhanced Hydrogen Evolution Reaction Performance. ACS Catalysis 2016, 6, 7071-7077.
201. Sarker, S.; Lee, K.-S.; Seo, H. W.; Jin, Y.-K.; Kim, D. M., Reduced Graphene Oxide for Pt-Free Counter Electrodes of Dye-Sensitized Solar Cells. Solar Energy 2017, 158, 42-48.
202. Li, W.; Long, G.; Chen, Q.; Zhong, Q., High-Efficiency Layered Sulfur-Doped Reduced Graphene Oxide and Carbon Nanotube Composite Counter Electrode for Quantum Dot Sensitized Solar Cells. Journal of Power Sources 2019, 430, 95-103.
203. Huang, J., et al., Novel Etched Iron Oxide Mediated Synthesis of 3d Tremella-Like Mesoporous Fe/N Co-Doped Graphene Composite as a Highly Efficient Platinum-Free Counter Electrode in Dye-Sensitized Solar Cells. Electrochimica Acta 2019, 296, 165-173.
204. Zhang, J.; Yu, M.; Li, S.; Meng, Y.; Wu, X.; Liu, J., Transparent Conducting Oxide-Free Nitrogen-Doped Graphene/Reduced Hydroxylated Carbon Nanotube Composite Paper as Flexible Counter Electrodes for Dye-Sensitized Solar Cells. Journal of Power Sources 2016, 334, 44-51.
205. Naresh, V.; Bhattacharjee, U.; Martha, S. K., Boron Doped Graphene Nanosheets as Negative Electrode Additive for High-Performance Lead-Acid Batteries and Ultracapacitors. Journal of Alloys and Compounds 2019, 797, 595-605.
206. Wang, Z.; Li, P.; Chen, Y.; He, J.; Liu, J.; Zhang, W.; Li, Y., Phosphorus-Doped Reduced Graphene Oxide as an Electrocatalyst Counter Electrode in Dye-Sensitized Solar Cells. Journal of Power Sources 2014, 263, 246-251.
207. Kang, Y.; Wang, B.; Yan, Y.; Rana, H. H.; Lee, J.-Y.; Kim, J.-H.; Park, H. S., Three-Dimensionally Macroporous Nitrogen and Boron Co-Doped Graphene Aerogels Derived from Polyaspartamide for Supercapacitor Electrodes. Materials Today Communications 2020, 25, 101495.
208. Zou, X.; Wu, D.; Mu, Y.; Xing, L.; Zhang, W.; Gao, Z.; Xu, F.; Jiang, K., Boron and Nitrogen Co-Doped Holey Graphene Aerogels with Rich B–N Motifs for Flexible Supercapacitors. Carbon 2020, 159, 94-101.
209. Xing, T.; Zheng, Y.; Li, L. H.; Cowie, B. C. C.; Gunzelmann, D.; Qiao, S. Z.; Huang, S.; Chen, Y., Observation of Active Sites for Oxygen Reduction Reaction on Nitrogen-Doped Multilayer Graphene. ACS Nano 2014, 8, 6856-6862.
210. Wang, G.; Xing, W.; Zhuo, S., Nitrogen-Doped Graphene as Low-Cost Counter Electrode for High-Efficiency Dye-Sensitized Solar Cells. Electrochimica Acta 2013, 92, 269-275.
211. Murata, H.; Nakajima, Y.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.; Toko, K., High-Electrical-Conductivity Multilayer Graphene Formed by Layer Exchange with Controlled Thickness and Interlayer. Scientific Reports 2019, 9, 4068.
212. Del Grande, R. R.; Menezes, M. G.; Capaz, R. B., Layer Breathing and Shear Modes in Multilayer Graphene: A Dft-Vdw Study. Journal of Physics: Condensed Matter 2019, 31, 295301.
213. Ghorbanzadeh Ahangari, M.; Salmankhani, A.; Imani, A. H.; Shahab, N.; Hamed Mashhadzadeh, A., Density Functional Theory Study on the Mechanical Properties and Interlayer Interactions of Multi-Layer Graphene: Carbonic, Silicon-Carbide and Silicene Graphene-Like Structures. Silicon 2019, 11, 1235-1246.
214. Zhou, S.; Bongiorno, A., Density Functional Theory Modeling of Multilayer “Epitaxial” Graphene Oxide. Accounts of Chemical Research 2014, 47, 3331-3339.
215. Kan, E.; Ren, H.; Wu, F.; Li, Z.; Lu, R.; Xiao, C.; Deng, K.; Yang, J., Why the Band Gap of Graphene Is Tunable on Hexagonal Boron Nitride. The Journal of Physical Chemistry C 2012, 116, 3142-3146.
216. Lin, M.-L.; Chen, T.; Lu, W.; Tan, Q.-H.; Zhao, P.; Wang, H.-T.; Xu, Y.; Tan, P.-H., Identifying the Stacking Order of Multilayer Graphene Grown by Chemical Vapor Deposition Via Raman Spectroscopy. Journal of Raman Spectroscopy 2018, 49, 46-53.
217. Wang, Y.; Ding, Y., Structural, Electronic, and Magnetic Properties of the Semifluorinated Boron Nitride Bilayer: A First-Principles Study. The Journal of Physical Chemistry C 2013, 117, 3114-3121.
218. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. The Journal of Chemical Physics 2000, 113, 9901-9904.
219. Henkelman, G.; Jónsson, H., Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. The Journal of Chemical Physics 2000, 113, 9978-9985.
220. Lin, K.-Y.; Nachimuthu, S.; Nguyen, M. T.; Mizuta, H.; Jiang, J.-C., Effects of Electric Field on the Performance of Graphene-Based Counter Electrodes for Dye-Sensitized Solar Cells: A Theoretical Study. The Journal of Physical Chemistry C 2019, 123, 30373-30381.
221. Hass, J.; Feng, R.; Millán-Otoya, J. E.; Li, X.; Sprinkle, M.; First, P. N.; de Heer, W. A.; Conrad, E. H.; Berger, C., Structural Properties of the Multilayer Graphene/$4h\Text{\Ensuremath{-}}\Mathrm{Si}\Mathrm{C}(000\Overline{1})$ System as Determined by Surface X-Ray Diffraction. Physical Review B 2007, 75, 214109.
222. Karpan, V. M.; Giovannetti, G.; Khomyakov, P. A.; Talanana, M.; Starikov, A. A.; Zwierzycki, M.; van den Brink, J.; Brocks, G.; Kelly, P. J., Graphite and Graphene as Perfect Spin Filters. Physical Review Letters 2007, 99, 176602.
223. Dai, L., Functionalization of Graphene for Efficient Energy Conversion and Storage. Accounts of Chemical Research 2013, 46, 31-42.
224. Hou, Y.; Wang, D.; Yang, X. H.; Fang, W. Q.; Zhang, B.; Wang, H. F.; Lu, G. Z.; Hu, P.; Zhao, H. J.; Yang, H. G., Rational Screening Low-Cost Counter Electrodes for Dye-Sensitized Solar Cells. Nature Communications 2013, 4, 1583.
225. Hauch, A.; Georg, A., Diffusion in the Electrolyte and Charge-Transfer Reaction at the Platinum Electrode in Dye-Sensitized Solar Cells. Electrochimica Acta 2001, 46, 3457-3466.
226. Kamat, P. V.; Tvrdy, K.; Baker, D. R.; Radich, J. G., Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells. Chemical Reviews 2010, 110, 6664-6688.
227. Lee, Y.-L.; Lo, Y.-S., Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of Cds/Cdse. Advanced Functional Materials 2009, 19, 604-609.
228. Giménez, S.; Mora-Seró, I.; Macor, L.; Guijarro, N.; Lana-Villarreal, T.; Gómez, R.; Diguna, L. J.; Shen, Q.; Toyoda, T.; Bisquert, J., Improving the Performance of Colloidal Quantum-Dot-Sensitized Solar Cells. Nanotechnology 2009, 20, 295204.
229. Yang, Z.; Chen, C.-Y.; Liu, C.-W.; Li, C.-L.; Chang, H.-T., Quantum Dot–Sensitized Solar Cells Featuring Cus/Cos Electrodes Provide 4.1% Efficiency. Advanced Energy Materials 2011, 1, 259-264.
230. Yang, Z.; Chen, C.-Y.; Liu, C.-W.; Chang, H.-T., Electrocatalytic Sulfur Electrodes for Cds/Cdse Quantum Dot-Sensitized Solar Cells. Chemical Communications 2010, 46, 5485-5487.
231. Tachan, Z.; Shalom, M.; Hod, I.; Rühle, S.; Tirosh, S.; Zaban, A., Pbs as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells. The Journal of Physical Chemistry C 2011, 115, 6162-6166.
232. Jiao, S.; Du, J.; Du, Z.; Long, D.; Jiang, W.; Pan, Z.; Li, Y.; Zhong, X., Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12%. The Journal of Physical Chemistry Letters 2017, 8, 559-564.
233. Du, Z.; Pan, Z.; Fabregat-Santiago, F.; Zhao, K.; Long, D.; Zhang, H.; Zhao, Y.; Zhong, X.; Yu, J.-S.; Bisquert, J., Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11%. The Journal of Physical Chemistry Letters 2016, 7, 3103-3111.
234. Mukkabla, R.; Buchmeiser, M. R., Cathode Materials for Lithium–Sulfur Batteries Based on Sulfur Covalently Bound to a Polymeric Backbone. Journal of Materials Chemistry A 2020, 8, 5379-5394.
235. Hou, S.; Cai, X.; Wu, H.; Yu, X.; Peng, M.; Yan, K.; Zou, D., Nitrogen-Doped Graphene for Dye-Sensitized Solar Cells and the Role of Nitrogen States in Triiodide Reduction. Energy Environ. Sci. 2013, 6, 3356.
236. Xue, Y.; Liu, J.; Chen, H.; Wang, R.; Li, D.; Qu, J.; Dai, L., Nitrogen-Doped Graphene Foams as Metal-Free Counter Electrodes in High-Performance Dye-Sensitized Solar Cells. Angew. Chem., Int. Ed. 2012, 51, 12124.
237. Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S., Rechargeable Lithium–Sulfur Batteries. Chemical Reviews 2014, 114, 11751-11787.
238. Sun, Y.-K., Direction for Development of Next-Generation Lithium-Ion Batteries. ACS Energy Letters 2017, 2, 2694-2695.
239. Manthiram, A.; Fu, Y.; Su, Y.-S., Challenges and Prospects of Lithium–Sulfur Batteries. Accounts of Chemical Research 2013, 46, 1125-1134.
240. Yin, Y.-X.; Xin, S.; Guo, Y.-G.; Wan, L.-J., Lithium–Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angewandte Chemie International Edition 2013, 52, 13186-13200.
241. Feng, S.; Song, J.; Zhu, C.; Shi, Q.; Liu, D.; Li, J.; Du, D.; Zhang, Q.; Lin, Y., Assembling Carbon Pores into Carbon Sheets: Rational Design of Three-Dimensional Carbon Networks for a Lithium–Sulfur Battery. ACS Applied Materials & Interfaces 2019, 11, 5911-5918.
242. Qie, L.; Manthiram, A., High-Energy-Density Lithium–Sulfur Batteries Based on Blade-Cast Pure Sulfur Electrodes. ACS Energy Letters 2016, 1, 46-51.
243. Luo, L.; Manthiram, A., Rational Design of High-Loading Sulfur Cathodes with a Poached-Egg-Shaped Architecture for Long-Cycle Lithium–Sulfur Batteries. ACS Energy Letters 2017, 2, 2205-2211.
244. Zeng, P.; Chen, M.; Jiang, S.; Li, Y.; Xie, X.; Liu, H.; Hu, X.; Wu, C.; Shu, H.; Wang, X., Architecture and Performance of the Novel Sulfur Host Material Based on Ti2o3 Microspheres for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2019, 11, 22439-22448.
245. Liang, X.; Nazar, L. F., In Situ Reactive Assembly of Scalable Core–Shell Sulfur–Mno2 Composite Cathodes. ACS Nano 2016, 10, 4192-4198.
246. Wang, H.; Zhou, T.; Li, D.; Gao, H.; Gao, G.; Du, A.; Liu, H.; Guo, Z., Ultrathin Cobaltosic Oxide Nanosheets as an Effective Sulfur Encapsulation Matrix with Strong Affinity toward Polysulfides. ACS Applied Materials & Interfaces 2017, 9, 4320-4325.
247. Simmonds, A. G., et al., Inverse Vulcanization of Elemental Sulfur to Prepare Polymeric Electrode Materials for Li–S Batteries. ACS Macro Letters 2014, 3, 229-232.
248. Chung, W. J., et al., The Use of Elemental Sulfur as an Alternative Feedstock for Polymeric Materials. Nature Chemistry 2013, 5, 518-524.
249. Yan, J.; Li, B.; Liu, X., Nano-Porous Sulfur–Polyaniline Electrodes for Lithium–Sulfurbatteries. Nano Energy 2015, 18, 245-252.
250. Talapaneni, S. N.; Hwang, T. H.; Je, S. H.; Buyukcakir, O.; Choi, J. W.; Coskun, A., Elemental-Sulfur-Mediated Facile Synthesis of a Covalent Triazine Framework for High-Performance Lithium–Sulfur Batteries. Angewandte Chemie International Edition 2016, 55, 3106-3111.
251. Xu, F.; Yang, S.; Jiang, G.; Ye, Q.; Wei, B.; Wang, H., Fluorinated, Sulfur-Rich, Covalent Triazine Frameworks for Enhanced Confinement of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2017, 9, 37731-37738.
252. Kim, H.; Lee, J.; Ahn, H.; Kim, O.; Park, M. J., Synthesis of Three-Dimensionally Interconnected Sulfur-Rich Polymers for Cathode Materials of High-Rate Lithium–Sulfur Batteries. Nature Communications 2015, 6, 7278.
253. Wang, W.; Cao, Z.; Elia, G. A.; Wu, Y.; Wahyudi, W.; Abou-Hamad, E.; Emwas, A.-H.; Cavallo, L.; Li, L.-J.; Ming, J., Recognizing the Mechanism of Sulfurized Polyacrylonitrile Cathode Materials for Li–S Batteries and Beyond in Al–S Batteries. ACS Energy Letters 2018, 3, 2899-2907.
254. Wang, J.; Yang, J.; Xie, J.; Xu, N., A Novel Conductive Polymer–Sulfur Composite Cathode Material for Rechargeable Lithium Batteries. Advanced Materials 2002, 14, 963-965.
255. Yu, X.-g.; Xie, J.-y.; Yang, J.; Huang, H.-j.; Wang, K.; Wen, Z.-s., Lithium Storage in Conductive Sulfur-Containing Polymers. Journal of Electroanalytical Chemistry 2004, 573, 121-128.
256. Zhang, S. S., Understanding of Sulfurized Polyacrylonitrile for Superior Performance Lithium/Sulfur Battery. Energies 2014, 7, 4588-4600.
257. Jin, Z.-Q.; Liu, Y.-G.; Wang, W.-K.; Wang, A.-B.; Hu, B.-W.; Shen, M.; Gao, T.; Zhao, P.-C.; Yang, Y.-S., A New Insight into the Lithium Storage Mechanism of Sulfurized Polyacrylonitrile with No Soluble Intermediates. Energy Storage Materials 2018, 14, 272-278.
258. Wang, X.; Qian, Y.; Wang, L.; Yang, H.; Li, H.; Zhao, Y.; Liu, T., Sulfurized Polyacrylonitrile Cathodes with High Compatibility in Both Ether and Carbonate Electrolytes for Ultrastable Lithium–Sulfur Batteries. Advanced Functional Materials 2019, 29, 1902929.
259. Wei, S.; Ma, L.; Hendrickson, K. E.; Tu, Z.; Archer, L. A., Metal–Sulfur Battery Cathodes Based on Pan–Sulfur Composites. Journal of the American Chemical Society 2015, 137, 12143-12152.
260. Wang, X.; Gao, T.; Han, F.; Ma, Z.; Zhang, Z.; Li, J.; Wang, C., Stabilizing High Sulfur Loading Li–S Batteries by Chemisorption of Polysulfide on Three-Dimensional Current Collector. Nano Energy 2016, 30, 700-708.
261. Yu, M.; Ma, J.; Song, H.; Wang, A.; Tian, F.; Wang, Y.; Qiu, H.; Wang, R., Atomic Layer Deposited Tio2 on a Nitrogen-Doped Graphene/Sulfur Electrode for High Performance Lithium–Sulfur Batteries. Energy & Environmental Science 2016, 9, 1495-1503.
262. Kapteijn, F.; Moulijn, J. A.; Matzner, S.; Boehm, H. P., The Development of Nitrogen Functionality in Model Chars During Gasification in Co2 and O2. Carbon 1999, 37, 1143-1150.
263. Doan, T. N. L.; Ghaznavi, M.; Zhao, Y.; Zhang, Y.; Konarov, A.; Sadhu, M.; Tangirala, R.; Chen, P., Binding Mechanism of Sulfur and Dehydrogenated Polyacrylonitrile in Sulfur/Polymer Composite Cathode. Journal of Power Sources 2013, 241, 61-69.
264. Li, G.; Sun, J.; Hou, W.; Jiang, S.; Huang, Y.; Geng, J., Three-Dimensional Porous Carbon Composites Containing High Sulfur Nanoparticle Content for High-Performance Lithium–Sulfur Batteries. Nature Communications 2016, 7, 10601.
265. Frisch, M.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. e., Gaussian∼ 09 Revision D. 01. 2014.
266. Yanai, T.; Tew, D. P.; Handy, N. C., A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (Cam-B3lyp). Chemical Physics Letters 2004, 393, 51-57.
267. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A., Self‐Consistent Molecular Orbital Methods. Xx. A Basis Set for Correlated Wave Functions. The Journal of Chemical Physics 1980, 72, 650-654.
268. Wolinski, K.; Hinton, J. F.; Pulay, P., Efficient Implementation of the Gauge-Independent Atomic Orbital Method for Nmr Chemical Shift Calculations. Journal of the American Chemical Society 1990, 112, 8251-8260.
269. Foster, J. P.; Weinhold, F., Natural Hybrid Orbitals. Journal of the American Chemical Society 1980, 102, 7211-7218.
270. Choudhuri, I.; Patra, N.; Mahata, A.; Ahuja, R.; Pathak, B., B–N@Graphene: Highly Sensitive and Selective Gas Sensor. J. Phys. Chem. C 2015, 119, 24827.

QR CODE