簡易檢索 / 詳目顯示

研究生: 陳滄智
Tsang-chih Chen
論文名稱: 具同步整流昇壓饋入式定頻半橋串聯諧振轉換器之研製
Desing and Implementation of a Boost-fed Constent-frequency Half-Bridge Series Resonant Converter with Synchronous Rectification
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 劉益華
none
歐勝源
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 178
中文關鍵詞: 交錯式昇壓轉換器串聯諧振轉換器同步整流電路。
外文關鍵詞: Interleaved Boost Converter, Series-Resonant Converter, Synchronous Rectifier
相關次數: 點閱:183下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要研製昇壓饋入式定頻操作半橋串聯諧振轉換器,其電路架構使用一組操作於不連續導通模式(Discontinuous-Conduction Mode, DCM)的交錯式昇壓轉換器,將後級串聯諧振轉換器輸出電壓回授至此昇壓轉換器,利用昇壓轉換器改變工作週期的工作方式,使串聯諧振轉換器電路於輕、中、重載時,皆能操作在諧振點上,以達到最佳效率。另一方面,控制IC電路所提供的信號,亦同時控制同步整流電路,讓轉換器在不同的負載電流條件下,同步整流控制信號皆可追隨一次側電路。藉由計算諧振電路所需的死域時間(Dead Time)和同步整流電路所需的延遲導通時間與提前截止時間,使得諧振電路在輕載至滿載的負載條件下時,皆能操作在零電壓切換(Zero-voltage-switching, ZVS)的工作模式。在輕載條件下,由於電路皆操作在諧振頻率上,可有效地降低切換損失,而在重載條件下時,同步整流電路可有效降低電路整體的導通損失,使得轉換器在不同的負載狀況下,均能達到最佳的轉換效率。
    依據本論文所研製的150 W / 19 V電路,整體電路包含前級功因修正電路及後級昇壓饋入式定頻半橋串聯諧振轉換器,能於輕載時減少切換損失,於重載時降低導通損失,並於輕載時能有效穩定輸出電壓並提昇效率,於輕載2 A至滿載8 A實測效率皆可達到90 %以上。


    This thesis presents a constant-frequency series resonant converter (SRC) with a pre-stage circuit of an interleaved DCM boost converter with a varied duty cycle regulated by output-voltage feedback. Under full-range load comditions, the series resonant converter is operated at the first resonant-frequency to achieve optimal efficiency performance. Synchronous Rectifier (SR) is also used to reduce the secondary rectification loss. The gating signals for synchromous rectifier are from a SR control IC to follow primary-side signals. For the studied SRC circuit, the zero-voltage-switcing (ZVS) at primary-side switches can reduce the switching losses at light-load condition due to resonant-frequency operation while the synchronous rectifier reduces the secondary rectification loss at heavy-load condition..
    Finally, an 150W/19V laboratory prototype composed of a power factor corrector (PFC) and the studied boost-fed constant-frequency series resonant converter was implemented and tested. Theoretical analyses are verified with the experimental results. The measured efficiency can be higher than 90% at 2A light-load to 8A heavy-load conditions.

    摘 要 i Abstract ii 誌 謝 iii 目 錄 v 圖索引 viii 表索引 viii 第一章 緒論 1 1-1 研究動機與目的 1 1-2 內文編排方式 3 多相式 3 第二章 功率因數修正器之架構與原理 4 2-1 功率因數與總諧波失真之定義 4 2-2 功率因數修正器之種類 11 2-2-1 主動式功率因數修正器 11 2-2-2 被動式功率因數修正器 12 2-3 功率因數修正器之電路架構 14 2-3-1 降壓型電路架構 14 2-3-2 昇降壓型電路架構 15 2-3-3 昇壓型電路架構 15 2-4 昇壓型功率因數修正器之電路架構與原理 16 第三章 無橋式功率因數修正器之架構與原理 20 3-1 單開關標準式 20 3-2 雙開關無橋式 23 3-3 單開關標準式與雙開關無橋式之電路架構比較 26 第四章 多相式昇壓型轉換器理論與分析 28 4-1 多相式昇壓型轉換器介紹 28 4-2 雙相交錯式昇壓型轉換器電路分析 30 4-3 雙相交錯式昇壓型轉換器電路動作工作時序分析 32 4-4 儲能電感分析 36 4-5 輸出電容分析 38 4-6 功率切換開關及功率二極體分析 41 4-7 雙相式昇壓型轉換器電路輸入漣波電流分析 42 第五章 串聯諧振轉換器動作原理 45 5-1 R-L-C串聯諧振電路 46 5-2 半橋串聯諧振式轉換器電路 48 5-2-1 Region 1(SRC諧振模式) 50 5-2-2 Region 2(LLC諧振模式) 51 5-2-3 Region 3(零電流切換區間) 53 5-3 SRC電路動作分析 54 5-4 LLC-SRC電路動作分析 61 5-5 SRC與LLC-SRC之分析比較 70 第六章 定頻式半橋串聯諧振轉換器 73 6-1 定頻式半橋串聯諧振轉換器動作分析 73 6-2 諧振槽分析 80 6-2-1 諧振槽轉移函數分析 80 6-2-2 Q值對轉移函數的影響 83 6-2-3 K值對轉移函數的影響 84 6-2-4 n值大小對轉移函數的影響 86 6-2-5 Lr與Cr的變化對電壓增益函數的影響 87 6-3 定頻SRC輸出同步整流技術 88 6-3-1 同步整流技術之優點 88 6-3-2 輸出同步整流之信號控制 91 第七章 整機電路設計 92 7-1 主動功率因數修正器之電路設計 92 7-1-1 控制IC FAN-6961 92 7-1-2 主動功率因數修正器電路規格 94 7-1-3 主動功率因數修正器之功率級元件設計 94 7-2 昇壓饋入式之定頻操作式串聯諧振電路設計流程 100 7-2-1 交錯式昇壓型轉換器電路設計 101 7-2-2 半橋式串聯諧振轉換器電路架構 103 7-2-3 半橋式串聯諧振式轉換器電路設計 104 7-2-4 諧振槽與變壓器設計 107 7-2-5 功率元件與輸出電容設計 112 第八章 實驗數據與結果 117 8-1 電路實測波形簡介 117 8-2 前級EMI + 無橋式 PFC電路實測波形與數據 118 8-2-1 輸入交流電壓源115 Vrms之波形 118 8-2-2 輸入交流電壓源115 Vrms之數據 123 8-2-3 輸入交流電壓源230 Vrms之波形 124 8-2-4 輸入交流電壓源230 Vrms之數據 129 8-3 後級定頻SRC電路實測波形與數據 130 8-3-1 交錯式昇壓電路之波形 131 8-3-2 串聯諧振與同步整流之上、下橋控制信號 135 8-3-3 串聯諧振電路驅動信號與諧振電感電流波形 138 8-3-4 後級定頻SRC電路實測數據 146 8-4 整機電路實測數據 148 8-4-1 輸入交流電壓源115 Vrms之數據 148 8-4-2 輸入交流電壓源230 Vrms之數據 150 第九章 結論與未來展望 152 9-1 結論 152 9-2 未來展望 152 參考文獻 154

    [1] J. Feng, Y. Hu, W. Chen, and C. C. Wen, “ZVS Analysis of Asymmetrical Half-Bridge Converter,” IEEE PESC, vol. 1, pp. 243-247, 2001.
    [2] I. H. Oh, “A Soft-switching Synchronous Buck Converter for Zero Voltage Switching (ZVS) in light and full load conditions,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC): pp. 1460-1464, Feb. 2008.
    [3] 彭譽耀,「交錯式半橋串聯諧振轉換器研製」,國立台灣科技大學電子工程系研究所碩士論文,民國101年。
    [4] 吳思賢,「高效率薄型外接式電源供應器之研製」,國立台灣科技大學電子工程系研究所碩士論文,民國100年。
    [5] F. C. Lee, “High-Frequency Quasi-Resonant and Multi-Resonant Converter Technologies,” IEEE IECON, pp. 509-521, 1988.
    [6] A. K. S. Bhat, “Analysis and Design of a Modified Series Resonant Converter,” IEEE Transactions on Power Electronics, pp. 423-430, 1993.
    [7] M. K. Kazimierczuk and S. Wong, “Frequency-Domain Analysis of Series Resonant Converter for Continuous Conduction Mode,” IEEE Transactions on Power Electronics, Vol. 6, pp. 270-279, 1992.
    [8] R. Liu and C. Q. Lee, “Analysis and Design of LLC-type Series Resonant Converter,” IEE Proc. Vol. 24, pp. 1517-1519, 1988.
    [9] R. Liu, C. Q. Lee, and A. K. Upadhyay, “Experimental Study of the LLC-type Series Resonant Converter,” IEEE APEC, pp. 31-37, 1990.
    [10] B. Yang, F. C. Lee, A. J. Zhang, and G. S. Huang, “LLC Resonant Converter for Front End DC/DC Conversion,” IEEE APEC, pp. 1108-1112, 2002.
    [11] Ya Liu, “High Efficiency Optimization of LLC Resonant Converter for Wide Load Range,” Blacksburg, Virginia, December 4th, 2007.
    [12] F. S. Tsai and F. C. Lee. “A Complete DC Characterization of a Constant-Frequency, Clamped-Mode, Series Resonant Converter,” IEEE PESC, pp. 987-996, 1988.
    [13] K. Siri and C. Q. Lee, “Constant Switching Frequency LLC-type Series Resonant Converter,” IEEE Circuits and Systems, Vol. 1, pp. 513-516, 1989.
    [14] 曾軍皓,「高效能功率因數修正器研製」,國立台灣科技大學電子工程系研究所碩士論文,民國95年。
    [15] 宋自恆、林慶仁,「功率因數修正器之原理與常用元件規格」,新電子科技雜誌217期,民國93年。
    [16] 黃耀億,「無橋式功率因數修正器之研製」,國立台灣科技大學電子工程系研究所碩士論文,民國96年。
    [17] 陳家慶,「高效率磷酸鋰鐵蓄電池充電器之研製」,國立台灣科技大學電子工程系研究所碩士論文,民國100年。
    [18] 謝奇諺,「無橋及雙相交錯主動功率因數修正器之研製」,國立台灣科技大學電子工程系研究所碩士論文,民國101年。
    [19] Z.Chen, “Active Boost Power Factor Analysis and Design,” IBM Corporation, April 20, 1989.
    [20] J. W. Lim, and B. H. Kwon, “A Power-Factor Controller for Single-Phase PWM Rectifiers,” IEEE Trans. Industrial Electronics, vol. 46, no. 5. pp. 398-404, May 2002.
    [21] P. N. Enjeti, and R. Martinez, “A High Performance Single Phase AC to DC Rectifier with Input Power Factor Correction,” IEEE Proc. APEC’93, pp. 190-195, 1993.
    [22] 陳揚斌,「高效率LLC同步整流串聯諧振轉換器之研製」,國立台灣科技大學電子工程系研究所碩士論文,民國98年。
    [23] Q. Zhao and G. Stojcic, “Characterization of dv/dt Induced Power Loss in Synchronous Buck DC-DC Converters,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC): pp. 292-297, Sept. 2004.
    [24] N. Mohan, T. M. Undeland and W. P. Robbins, “Power Electronics Converters, Applications and Design,” John Wiley & Sons, 3rd Edition: 2003.
    [25] Pressman, “Switching Power Supply Design,” McGraw-Hill Inc.: 1998.
    [26] 梁適安 著,「交換式電源供應器之理論與實務設計」,全華科技圖書,民國83年。
    [27] 梁適安 著,「高頻交換式電源供應器原理與設計」,第二版,台灣全華科技圖書出版,民國91年6月。
    [28] TEXAS INTRUMENTS, CD4011B, CMOS NAND GATES: Data Sheet, 2003.
    [29] FAIRCHILD, FAN6961, Boundary Mode PFC Controller: Data Sheet, 2009.
    [30] TDK Ferrite Cores for Power Supply and EMI/RFI Filter, 2007.
    [31] TEXAS INTRUMENTS, TL494, Pulse-Width-Modulation Ccontrrol Circuits: Data Sheet, 2005.
    [32] TEXAS INTRUMENTS, UCC25600, High-Performance Resonant Mode Controller: Data Sheet, 2008.

    QR CODE