簡易檢索 / 詳目顯示

研究生: 楊弘君
Hung-Chun Yang
論文名稱: 以排煙脫硫海水為鎂源自含磷酸與銨半導體廢水回收磷酸銨鎂
Recovery of Phosphate and Ammonium as Struvite from Semiconductor Wastewater Using FGD Seawater as Magnesium Source
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 李奇旺
Chi-Wang Li
胡哲嘉
Che-Chia Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 99
中文關鍵詞: 氨氮排煙脫硫磷酸鹽海水鳥糞石廢水
外文關鍵詞: Ammonium, Flue gas desulfurization, Phosphate, Seawater, Struvite, Wastewater
相關次數: 點閱:231下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

磷是生物的必要營養,也是重要的工業原料。其不可再生性使得回收再利用廢棄物中的磷成為舉世共同關切。本研究利用發電廠抽取海水為排煙脫硫(Flue gas desulfurization, FGD)產生之廢水為鎂元素來源,結合半導體業使用後之氨氮廢水及磷酸廢液,生成磷酸銨鎂(MgNH4PO4·6H2O, struvite)沉澱。本研究主要目的為系統性評估排煙脫硫海水作為合成鳥糞石之鎂元素替代來源的可行性。PHREEQC熱力學模擬結果及實驗數據顯示,當[Mg2+]:[NH4+]:[PO43-]的莫爾比為1:1:1,pH值為9.0,且在初始磷酸鹽濃度為500-2,000 mg/L時,磷酸和氨氮的移除率分別可達75-97%和35-84%。本研究的固體產物利用X光繞射儀(X-ray diffraction, XRD)、掃描式電子顯微鏡(Scanning electron microscope, SEM)、能量分散X光元素分析儀(Energy-dispersive X-ray analysis, EDX)和濕式化學法,證實不同條件下生成的鳥糞石。我們也評估離子強度以及加入不同晶種微粒如何影響生成的鳥糞石結晶大小及其沉降速度;結果顯示,鳥糞石結晶尺寸隨離子強度增加而下降,在晶種影響方面則無明顯變化。根據本研究結果評估透過排煙脫硫廢水可以作為合成鳥糞石之鎂元素替代來源,可有效的回收半導體業廢水中的氨氮及磷酸鹽為鳥糞石結晶。


The removal and recovery of ammonium (NH4+) and phosphate (PO43-) from semiconductor wastewater in the form of struvite (MgNH4PO4·6H2O) was examined, using seawater from flue gas desulfurization (FGD seawater) as an alternative magnesium source. The effects of pH, molar ratio ([Mg2+]:[NH4+]:[PO43-]), initial phosphate concentration, and ionic strength were examined. Depending upon initial phosphate concentration, ranging from 500 to 2,000 mg/L, 75-97% of PO43- and 35-84% of NH4+ could be recovered as precipitates at pH 9.0, and [Mg2+]: [NH4+]: [PO43-] of 1:1:1. Recovered precipitation consisted mainly of struvite (52-60%), as confirmed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), and wet chemical analysis. Experimental results showed that size of precipitates decreased with increasing ionic strength. Seed crystals helped the settlement of the precipitates. It was found that FGD seawater was a feasible magnesium source for producing struvite and from semiconductor wastewater containing phosphate and ammonium.

摘要 I ABSTRACT II ACKNOWLEDGEMENT III OUTLINE IV LIST OF FIGURES VI LIST OF TABLES X CHAPTER 1 1-1 1.1 Background 1-1 1.2 Objective 1-1 CHAPTER 2 2-1 2.1 Phosphorus 2-1 2.2 Removal and recovery of phosphate 2-4 2.2.1 Phosphate in wastewater 2-4 2.2.2 Removal and recovery of phosphorus 2-7 2.2.3 Precipitation of struvite 2-8 2.3 Alternative magnesium source for struvite production 2-10 CHAPTER 3 3-1 3.1 Materials and regents 3-1 3.2 Instrument 3-2 3.3 Methods 3-2 3.3.1 Experimental framework and procedures 3-2 3.3.2 Characterization of wastewater 3-4 3.3.3 Precipitation process 3-7 3.3.4 Thermodynamic modeling software-PHREEQC 3-8 3.3.5 ICP-OES analysis 3-10 3.3.6 IC analysis 3-10 3.3.7 Nitrogen-ammonia analysis by Nessler method 3-11 3.3.8 Turbidity analysis 3-12 3.3.9 X-ray diffraction (XRD) 3-12 3.3.10 Field-emission scanning electron microscope (FESEM) and energy dispersive X-ray spectrometer (EDX) 3-13 3.3.11 Wet chemical analysis 3-13 3.3.12 Settling behaviors 3-13 3.3.13 Laser diffraction particle size analyzer (LDPSA) 3-14 CHAPTER 4 4-1 4.1 PHREEQC thermodynamic modeling 4-1 4.2 Precipitation process 4-3 4.2.1 Effect of pH 4-3 4.2.2 Effect of initial phosphate concentration 4-7 4.2.3 Effect of ionic strength 4-10 4.2.4 Effect of seed crystal 4-17 4.2.5 Effect of magnesium source 4-29 CHAPTER 5 5-1 5.1 Conclusions 5-1 5.2 Recommendations 5-2 REFERENCE R-1 APPENDIX A-1

Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257-275.
Abrams, J. Z., Zaczek, S. J., Benz, A. D., Awerbuch, L., & Haidinger, J. (1988). Use of Seawater in Flue Gas Desulfurization. Journal of the Air Pollution Control Association, 38(7), 969-974.
Agrawal, S., Guest, J. S., & Cusick, R. D. (2018). Elucidating the impacts of initial supersaturation and seed crystal loading on struvite precipitation kinetics, fines production, and crystal growth. Water Research, 132, 252-259.
Aguado, D., Barat, R., Bouzas, A., Seco, A., & Ferrer, J. (2019). P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources. Science of the Total Environment, 672, 88-96.
Andrés, E., Araya, F., Vera, I., Pozo, G., & Vidal, G. (2018). Phosphate removal using zeolite in treatment wetlands under different oxidation-reduction potentials. Ecological Engineering, 117, 18-27.
Babić-Ivančić, V., Kontrec, J., Brečević, L., & Kralj, D. (2006). Kinetics of struvite to newberyite transformation in the precipitation system MgCl2–NH4H2PO4–NaOH–H2O. Water Research, 40(18), 3447-3455.
Bering, S., Mazur, J., Tarnowski, K., Janus, M., Mozia, S., & Morawski, A. W. (2018). The application of moving bed bio-reactor (MBBR) in commercial laundry wastewater treatment. Science of the Total Environment, 627, 1638-1643.
Bhuiyan, M. I. H., Mavinic, D. S., & Beckie, R. D. (2008). Nucleation and growth kinetics of struvite in a fluidized bed reactor. Journal of Crystal Growth, 310(6), 1187-1194.
Bhuiyan, M.I.H., Mavinic, D.S., Beckie, R.D. (2007). A solubility and thermodynamic study of struvite. Environmental Engineering, 28(9),1015-1026.
Butusov, M., & Jernelöv, A. (2013). Phosphorus in the organic life: cells, tissues, organisms. in: Phosphorus. Springer, New York, NY.
Carrillo, V., Fuentes, B., Gómez, G., & Vidal, G. (2020). Characterization and recovery of phosphorus from wastewater by combined technologies. Reviews in Environmental Science and Bio/Technology, 19, 389-418.
Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change, 19(2), 292-305.
da Fontoura, J. T., Rolim, G. S., Farenzena, M., & Gutterres, M. (2017). Influence of light intensity and tannery wastewater concentration on biomass production and nutrient removal by microalgae Scenedesmus sp. Process Safety and Environmental Protection, 111, 355-362.
Dai, H., Lu, X., Peng, Y., Zou, H., & Shi, J. (2016). An efficient approach for phosphorus recovery from wastewater using series-coupled air-agitated crystallization reactors. Chemosphere, 165, 211-220.
del Bubba, M., Checchini, L., Pifferi, C., Zanieri, L., & Lepri, L. (2004). Olive mill wastewater treatment by a pilot-scale subsurface horizontal flow (SSF-h) constructed wetland. Annali Di Chimica, 94(12), 875-887.
Doyle, J. D., & Parsons, S. A. (2002). Struvite formation, control and recovery. Water Research, 36(16), 3925-3940.
Etter, B., Tilley, E., Khadka, R., & Udert, K. M. (2011). Low-cost struvite production using source-separated urine in Nepal. Water Research, 45(2), 852-862.
Falahati, F., Baghdadi, M., & Aminzadeh, B. (2018). Treatment of dairy wastewater by graphene oxide nanoadsorbent and sludge separation, using in situ sludge magnetic impregnation (ISSMI). Pollution, 4(1), 29-41.
Fattah, K. P., Shabani, S., & Ahmed, A. (2013). Use of desalinated reject water as a source of magnesium for phosphorus recovery. International Journal of Chemical Engineering and Applications, 4 (3), 165-168.
Gregory, T. M. (1974). Solubility of β-Ca3(PO4)2 in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25, and 37℃. Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry, 78(6), 667-674.
Hanhoun, M., Montastruc, L., Azzaro-Pantel, C., Biscans, B., Frèche, M., & Pibouleau, L. (2011). Temperature impact assessment on struvite solubility product: A thermodynamic modeling approach. Chemical Engineering Journal, 167(1), 50-58.
Hövelmann, J., & Putnis, C. V. (2016). In Situ Nanoscale Imaging of Struvite Formation during the Dissolution of Natural Brucite: Implications for Phosphorus Recovery from Wastewaters. Environmental Science & Technology, 50(23), 13032-13041.
Huang, H., Liu, J., Zhang, P., Zhang, D., & Gao, F. (2017). Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chemical Engineering Journal, 307, 696-706.
Hultberg, M., & Bodin, H. (2019). Fungi-based treatment of real brewery waste streams and its effects on water quality. Bioprocess and Biosystems Engineering, 42, 1317-1324
Ichihashi, O., & Hirooka, K. (2012). Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresource Technology, 114, 303-307.
Izadi, P., Izadi, P., & Eldyasti, A. (2020). Design, operation and technology configurations for enhanced biological phosphorus removal (EBPR) process: a review. Reviews in Environmental Science and Bio/Technology, 19, 561-593.
Johnsson, M. S. A., Nancollas, G. H. (1992). The role of brushite and octacalcium phosphate in apatite formation. Critical Reviews in Oral Biology and Medicine, 3(1), 61-82.
Kabdaşlı, I., Atalay, Z., & Tünay, O. (2017). Effect of solution composition on struvite crystallization. Journal of Chemical Technology & Biotechnology, 92(12), 2921-2928.
Karl, D. M. (2000). Aquatic ecology: Phosphorus, the staff of life. Nature, 406(6791), 31.
Kataki, S., West, H., & Clarke, M., (2016). Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resources, Conservation and Recycling, 107, 142-156.
Ken, A., Mavinic, D., & Koch, F. (2009). International Conference on Nutrient Recovery from Wastewater Streams. IWA Publishing, UK.
Kiani, D., Sheng, Y., Lu, B., Barauskas, D., Honer, K., Jiang, Z., & Baltrusaitis, J. (2018). Transient struvite formation during stoichiometric (1:1) NH4+ and PO43- adsorption/reaction on magnesium oxide (MgO) particles. ACS Sustainable Chemistry & Engineering, 7(1), 1545-1556.
Kim, D., Min, K. J., Lee, K., Yu, M. S., & Park, K. Y. (2016). Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater. Environmental Engineering Research, 22(1), 12-18.
Kim, D., Min, K. J., Yu, M. S., Lee, K., Kweon, J., & Park, K. Y. (2016). Use of concentrate water from seawater desalination plant as magnesium sources for struvite formation by using anaerobically digested effluent of swine wastewater. Desalination and Water Treatment, 57(55), 26751-26757.
Lahav, O., Telzhensky, M., Zewuhn, A., Gendel, Y., Gerth, J., Calmano, W., & Birnhack, L. (2013). Struvite recovery from municipal-wastewater sludge centrifuge supernatant using seawater NF concentrate as a cheap Mg(II) source. Separation and Purification Technology, 108, 103-110.
Laidler, K. J. (1996). A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC Recommendations 1996). Pure and Applied Chemistry, 68(1), 149-192.
Lan, T., Zhang, X., Yu, Q., & Lei, L. (2012). Study on the Relationship between Absorbed S(IV) and pH in the Seawater Flue Gas Desulfurization Process. Industrial & Engineering Chemistry Research, 51(12), 4478-4484.
Le Corre, K. S., Valsami-Jones, E., Hobbs, P., Jefferson, B., & Parsons, S. A. (2007). Struvite crystallisation and recovery using a stainless steel structure as a seed material. Water Research, 41(11), 2449-2456.
Li, R., Wang, X., & Li, X. (2018). A membrane bioreactor with iron dosing and acidogenic co-fermentation for enhanced phosphorus removal and recovery in wastewater treatment. Water Research, 129, 402-412.
Li, Y., Nan, Xi., Li, D., Wang, L., Xu, R., & Li, Q. (2021). Advances in the treatment of phosphorus-containing wastewater. IOP Conference Series: Earth and Environmental Science, 647, 012163.
Lim, S. L., Chu, W. L., & Phang, S. M. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource Technology, 101(19), 7314-7322.
Liu, Y. (2017). Speciation and mobility of phosphate in the eutrophic ponds at Prospect Park, Brooklyn, New York, USA. Journal of Geoscience and Environment Protection, 5(06), 26.
Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., Yamamoto, K., & Nghiem, L. D. (2016). Phosphorus and water recovery by a novel osmotic membrane bioreactor–reverse osmosis system. Bioresource Technology, 200, 297-304.
Markou, G., Chatzipavlidis, I., & Georgakakis, D. (2012). Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresource Technology, 112, 234-241.
Matsumiya, Y., Yamasita, T., & Nawamura, Y. (2000). Phosphorus removal from sidestreams by crystallisation of magnesium-ammonium-phosphate using seawater. Water and Environment Journal, 14(4), 291-296.
Max Finlayson, C., & Chick, A. J. (1983). Testing the potential of aquatic plants to treat abattoir effluent. Water Research, 17(4), 415-422.
Mosse, K. P. M., Patti, A. F., Christen, E. W., & Cavagnaro, T. R. (2011). Review: Winery wastewater quality and treatment options in Australia. Australian Journal of Grape and Wine Research, 17(2), 111-122.
Mulkerrins, D. D. A. C. E., Dobson, A. D. W., & Colleran, E. (2004). Parameters affecting biological phosphate removal from wastewaters. Environment International, 30(2), 249-259.
Münch, E. V., & Barr, K. (2001). Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Water Research, 35(1), 151-159.
Muster, T. H., Douglas, G. B., Sherman, N., Seeber, A., Wright, N., & Güzükara, Y. (2013). Towards effective phosphorus recycling from wastewater: quantity and quality. Chemosphere, 91(5), 676-684.
Musvoto, E. V., Wentzel, M. C., & Ekama, G. A. (2000). Integrated chemical-physical processes modelling-II. simulating aeration treatment of anaerobic digester supernatants. Water Research, 34(6), 1868-1880.
Ohlinger, K. N., Young, T. M., & Schroeder, E. D. (1999). Kinetics Effects on Preferential Struvite Accumulation in Wastewater. Journal of Environmental Engineering, 125(8), 730-737.
Parkhurst, D. L., & Appelo, C. A. J. (1999). User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS: Denver, CO, US.
Passero, M., Cragin, B., Coats, E. R., McDonald, A. G., & Feris, K. (2015). Dairy Wastewaters for Algae Cultivation, Polyhydroxyalkanote Reactor Effluent Versus Anaerobic Digester Effluent. BioEnergy Research, 8(4), 1647-1660.
Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768-781.
Petruccioli, M., Cardoso Duarte, J., Eusebio, A., & Federici, F. (2002). Aerobic treatment of winery wastewater using a jet-loop activated sludge reactor. Process Biochemistry, 37(8), 821-829.
Ryu, H. D., Kim, D., & Lee, S. I. (2008). Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater. Journal of Hazardous Materials, 156(1-3), 163-169.
Sakthivel, S. R., Tilley, E., & Udert, K. M. (2012). Wood ash as a magnesium source for phosphorus recovery from source-separated urine. Science of the Total Environment, 419, 68-75.
Sengupta, S., & Pandit, A. (2011). Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Research, 45(11), 3318-3330.
Shaddel, S., Grini, T., Andreassen, J. P., Østerhus, S. W., & Ucar, S. (2020). Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization. Chemosphere, 256, 126968.
Shaddel, S., Ucar, S., Andreassen, J.-P., & Østerhus, S. W. (2019). Engineering of struvite crystals by regulating supersaturation - correlation with phosphorus recovery, crystal morphology and process efficiency. Journal of Environmental Chemical Engineering, 7,102918.
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 587.
Shih, K., & Yan, H. (2016). The crystallization of struvite and its analog (k-struvite) from waste streams for nutrient recycling. In Environmental Materials and Waste. Academic Press, 665-686.
Silva, M., & Baltrusaitis, J. (2020). A review of phosphate adsorption on Mg-containing materials: kinetics, equilibrium, and mechanistic insights. Environmental Science: Water Research & Technology, 6, 3178-3194.
Tansel, B., Lunn, G., & Monje, O. (2018). Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions. Chemosphere, 194, 504-514.
Tarayre, C., De Clercq, L., Charlier, R., Michels, E., Meers, E., Camargo-Valero, M., & Delvigne, F. (2016). New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste. Bioresource Technology, 206, 264-274.
Toze, S. (2006). Reuse of effluent water—benefits and risks. Agricultural Water Management, 80(1-3), 147-159.
Uludag-Demirer, S., & Othman, M. (2009). Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation. Bioresource Technology, 100(13), 3236-3244.
US Geological Survey. (2020). Mineral Commodity Summaries, Government Printing Office, US.
Villamar, C.-A., Rodríguez, D.-C., López, D., Peñuela, G., & Vidal, G. (2013). Effect of the generation and physical–chemical characterization of swine and dairy cattle slurries on treatment technologies. Waste Management & Research, 31(8), 820-828.
Wang, J., Song, Y., Yuan, P., Peng, J., & Fan, M. (2006). Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery. Chemosphere, 65(7), 1182-1187.
Warmadewanthi, & Liu, J. C. (2009). Recovery of phosphate and ammonium as struvite from semiconductor wastewater. Separation and Purification Technology, 64(3), 368-373.
Warmadewanthi, & Liu, J. C. (2009). Selective Precipitation of Phosphate from Semiconductor Wastewater. Journal of Environmental Engineering, 135(10), 1063-1070.
Yalcuk, A., Pakdil, N. B., & Turan, S. Y. (2010). Performance evaluation on the treatment of olive mill waste water in vertical subsurface flow constructed wetlands. Desalination, 262(1-3), 209-214.
Ye, Z. L., Chen, S. H., Lu, M., Shi, J. W., Lin, L. F., & Wang, S. M. (2011). Recovering phosphorus as struvite from the digested swine wastewater with bittern as a magnesium source. Water Science and Technology, 64(2), 334-340.
Yetilmezsoy, K., & Sapci-Zengin, Z. (2009). Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. Journal of Hazardous Materials, 166(1), 260-269.
Yetilmezsoy, K., & Sapci-Zengin, Z. (2009). Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. Journal of Hazardous Materials, 166(1), 260-269.
Yu, R., Geng, J., Ren, H., Wang, Y., & Xu, K. (2013). Struvite pyrolysate recycling combined with dry pyrolysis for ammonium removal from wastewater. Bioresource Technology, 132, 154-159.
Zhang, T., Ding, L., Ren, H., & Xiang, X. (2009). Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology. Water Research, 43(20), 5209-5215.

QR CODE