簡易檢索 / 詳目顯示

研究生: 馬孟緯
Meng-Wei Ma
論文名稱: 透過p型半導體Ag2O奈米粒子負載於Al2O3載體對快速降解2-氯乙基乙基硫醚效能影響之研究
Effect of fast detoxication of 2-chloro ethyl ethyl sulfide by p-type Ag2O semiconductor nanoparticle-loaded Al2O3-based supports
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 薛人愷
Ren-Kae Shiue
蘇文炯
Wen-Chiung Su
楊正乾
Cheng-Chien Yang
尤逸玄
Yi-Hsiuan Yu
郭東昊
Dong-Hau Kuo
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 146
中文關鍵詞: 金屬氧化物奈米級Ag2O2-氯乙基乙基硫醚(2-CEES)毒化物降解
外文關鍵詞: metal oxide, Ag2O nanoparticle, 2-Chloro ethyl ethyl sulphide (2-CEES), Toxic detoxication
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

不同於一般傳統液態消除劑,固態金屬氧化物因具有高比表面積、良好的熱穩定性及物理、化學性質等特點,並且還兼具催化劑的角色,可藉由進行水解、氧化與催化等化學反應,降解去除化學毒性物質之危害性。有鑒於此,本研究嘗試以奈米級多孔性吸附材Al2O3或Al2O3/Na2SiO3(0.5wt.%~2.5wt.%)為擔體,藉由臨溼含浸法承載p型半導體Ag2O(1wt.%~10wt.%)奈米粒子,探討金屬氧化物於添加不同比例的濃度對降解模擬劑2-氯乙基乙基硫醚(C2H5SCH2CH2Cl,2-CEES)催化反應的影響。並利用化學還原法,將Ag2O還原成Ag金屬,探討其對催化反應可能造成的影響。研究應用BET、XRD、TEM、GC-PFPD及GC-MS來觀察與辨別這些催化反應,同時並進行材料結構與微結構的分析鑑定工作。
由表面積測定儀(BET)結果,經臨濕含浸Na2SiO3 及Ag2O的各系列觸媒,孔體積會隨著Ag2O或Na2SiO3含量的增加而下降,而平均孔徑則隨之上升,但不顯著。由氣相層析質譜儀(GC-MS)分析結果顯示,2.5%Ag2O/0.5%Na2SiO3/Al2O3具有降解催化的效果。催化反應後的產物為無毒之2-(乙硫基)乙醇(CH3CH2SCH2CH2OH)和2-(乙硫基)乙酸(CH3CH2SCH2COOH)。證實Ag2O不僅只扮演催化劑的角色,更能與水及Na2SiO3/Al2O3擔體產生協同效果來增加毒化物降解效能。由氣相層析儀(GC-PFPD)的分析結果得知,在溶於異丙醇的2-chloro ethyl ethyl sulphide (C2H5SCH2CH2Cl, 2-CEES)溶液中加入2.5 %的Al2O3或Al2O3/Na2SiO3進行催化反應,於15分鐘內的消除率可達82 %。顯示添加少量的Na2SiO3對催化反應即有極大的提升效果,且添加劑量濃度也能以計算得知,而Ag2O的添加更能大幅提升降解2-CEES之催化能力。顯示這些由電洞所構成的p型半導體Ag2O在啟動催化反應中扮演著不可或缺的角色。


Different from the traditional liquid state decontamination, because solid metal oxide is high than characteristics such as surface area, good heat stability and physics, chemical property,etc., and the role with catalyst, by applying and taking the chemical reaction of hydrolyzing, oxidizing and catalyzing etc. In order to degrade or remove the harmfulness of the toxic material of chemistry, and more important , have high affinity to personnel,apparatus and environment, will not cause and damage and pollute. p-type Ag2O (1wt.%~10wt.%)semiconductor nanoparticle-loaded Ag2O or Na2SiO3/Ag2O(0.5wt.%~2.5wt.%) powders used for detoxicating the surrogate of sulfur mustard of 2-chloro ethyl ethyl sulfide (C2H5SCH2CH2Cl, 2-CEES) were investigated. Different amounts of Ag2O and Na2SiO3 on catalyst supports were evaluated. And using chemical reduction method, sodium borohydride as reductant, Ag2O reduced to Ag metal, to explore its catalytic reaction may be the impact. Studying employs Brunauer-Emmett-Teller (BET)、X-ray diffraction (XRD)、Transmitted Electron Microscope (TEM)、Gas chromatography with a pulsed flame photometric detector (GC–PFPD) and gas chromatography coupled with a mass spectroscopy (GC–MS) were used to monitor and identify the catalytic reactions, together with reaction products analysis.
The results of the surface area (BET) analysis, showed that the wetting impregnated Na2SiO3 and Ag2O each series of catalyst, the pore volume will decrease with the increase of Ag2O or Na2SiO3 content, while the average pore diameter will rise, but not significant.
The results of gas chromatography-mass spectrometry (GC-MS) analysis, showed that 2.5% Ag2O / 0.5% Na2SiO3 / Al2O3 had the catalytic effect of degradation. The products after the catalytic reaction are non-toxic 2-(ethylthio)ethanol (CH3CH2SCH2CH2OH) and 2- (ethylthio) acetic acid (CH3CH2SCH2COOH). Confirmed Ag2O not only act as a catalyst, but also with water and Na2SiO3 / Al2O3 support synergistic effect to increase the toxicity of toxic compounds.
The results of the Gas chromatography (GC-PFPD) analysis, 2.5% Al2O3 or Al2O3 / Na2SiO3 was added to the solution of 2-chloroethyl ethyl sulphide (C2H5SCH2CH2Cl, 2-CEES) dissolved in isopropanol Response, within 15 minutes the elimination rate of up to 82%. By adding a small amount of Na2SiO3 on the catalytic reaction that has a great effect, and the concentration can be calculated to calculate the additive, and Ag2O addition can greatly enhance the catalytic capacity of 2-CEES degradation. The electronic holes dominating in p-type Ag2O is proposed to provide the key component and to initiate the catalytic reactions. The electronic hole-based detoxication mechanism is proposed.

目 錄 摘 要 I 誌 謝 V 目 錄 VII 圖 目 錄 X 表 目 錄 XV 第一章、緒論 1 1.1 前言 1 1.2 研究動機 5 1.3 研究目的 5 第二章、基礎特性與理論 7 2.1 化學毒劑 7 2.1.1 依毒理作用分類 7 2.1.2 依有效作用時間分類[23] 11 2.1.3 依降解反應方式分類 13 2.2 生物毒劑[34-37] 19 2.2.1 依病毒型態分類[22] 21 2.2.2 依病毒屬性分類 23 2.3 化學污染消除劑[CHEMICAL DECONTAMINATION AGENT]的發展 24 2.3.1 物理消除方法 24 2.3.2 化學消除方法 26 2.4 奈米材料[42] 28 2.4.1 奈米材料種類 29 2.4.2 奈米孔洞材料 30 2.4.3 奈米中孔洞材料[43-45] 32 2.4.4 製備方法與機制[47-50] 33 2.5 金屬氧化物奈米晶體 [51-54] 35 第三章、文獻回顧 40 第四章 實驗方法與步驟 75 4.1 實驗藥品、氣體與儀器設備 75 4.1.1 藥品與氣體 75 4.1.2 儀器設備 76 4.2觸媒的製備 77 4.2.1 矽酸鈉/氧化鋁複合粉末製備方法 78 4.2.2 氧化銀/氧化鋁複合粉末製備方法 80 4.2.3 氧化銀/矽酸鈉/氧化鋁複合粉末製備方法 82 4.2.4 金屬銀/矽酸鈉/氧化鋁複合粉末製備方法 84 4.3 物性鑑定 86 4.3.1 表面積測定與孔徑大小分佈測定(Brunauer-Emmett-Teller) 86 4.3.1.1等溫吸附曲線 90 4.3.1.2遲滯曲線的分類 93 4.3.2 X-射線繞射分析(X-ray diffraction analysis,XRD) 95 4.3.3 穿透式電子顯微鏡(Transmitted Electron Microscope,TEM) 97 4.3.4 氣相層析質譜儀(Gas Chromatography-Mass Spectrophoto- meter,GC-MS) 98 4.4 觸媒的化性鑑定 100 第五章 實驗結果與討論 102 5.1催化劑的鑑定 102 5.1.1 BET表面積與平均孔徑 102 5.1.2 X-射線繞射分析(XRD) 107 5.1.3 穿透式電子顯微鏡(TEM) 112 5.1.4 氣相層析質譜儀(GC-MS) 116 5.2觸媒的反應活性 123 5.2.1煅燒溫度對銀鈉矽氧觸媒在2-CEES降解反應的影響 123 5.2.2矽酸鈉前趨鹽含量對銀鈉矽氧觸媒降解反應的影響 126 5.2.3銀含量對銀鈉矽氧觸媒反應活性的影響 126 第六章 結論 131 第七章 參考文獻 134  

參考文獻
1. 陸軍學術雙月刊 第五十一卷第542期
2. https://zh.wikipedia.org/zh-tw/(United Nations Treaty Collection).
3. NewsLibrary.com-newspaper archive, clipping service – newspapers and other news sources. nl.newsbank.com. [2017-02-24].
4. https://zh.wikipedia.org/zh-tw/
5. MIL-HDBK-783(EA), Chemical and Biological (CB) Contamination Avoidance and Decontamination.
6. A. S. Avanish K. Srivastava, Beer Singh, Arvind K. Gupta, Malladi V.S. Suryanarayana, Pratibha Pandey, Kinetics of adsorptive removal of DEClP and GB on impregnated Al2O3 Nanoparticles, J. Hazard. Mater. 175 (2010) 795–801.
7. A. Saxena, A. K. Srivastava, A. Sharma, Beer Singh, Kinetics of adsorption of 2-chloroethylethylsulphide on Al2O3 nanoparticles with and without impregnants, J. Hazard. Mater. 169 (2009) 419–427.
8. G.K. Prasad, T.H. Mahato, Beer Singh, K. Ganesan, P. Pandey, K. Sekhar, Detoxification reactions of sulphur mustard on the surface of zinc oxide nanosized rods, J. Hazard. Mater. 149 (2007) 460–464.
9. T. H. Mahato, G. K. Pradad, B. Singh, J. Acharya, A. R. Srivastava, R. Vijayaraghavan, Nanocrystalline zinc oxide for the decontamintion of sarin, J. Hazard. Mater. 165 (2009) 928-932.
10. V. Štengl, D. Králová, F. Opluštil, T. Němec, Mesoporous manganese oxide for warfare agents degradation, Micropor Mesopor Mater. 156 (2012) 224–232.
11. R. M. Narske, K. J. Klabunde, S. Fultz, Solvent Effect on the Heterogeneous Adsorption and Reaction of Ethyl Sulfide on Nanocrystalline Magnesium Oxide, Langmuir. 18 (2002) 4819-4825.
12. B. Maddah, H. Chalabi, Int, Synthesis of MgO Nanoparticales and Identification of Their Destructive Reaction Products by 2-Chloroethyl Ethyl SulfideInt, J. Nanosci. Nanotechnol. 8 (3) ( 2012) 157-164.
13. G. W. Wagner, O. Koper, E. Lucas, S. Decker, K. J. Klabunde, Reactions of VX, GD, and HD with nanosize CaO: autocatalytic dehydrohalogenation of HD, J. Phys. Chem. B, 104 (2000) 5118-5123.
14. A. Kleinhammes, G. W. Wagner, H. Kulkarni, Y. Qi, J. Zhang, L. C. Qin, Y. Wu, Decontamination of 2 chloro ethyl ethyl supfide using titania nanoscrolls, Chem. Phys. Lett. 411 (2005) 81-85.
15. G. K. Prasad, B. Singh, K. Ganesan, A. Batra, T. Kumeria, P. K. Gutch, R. Vijayaraghavan, Modified titania nanotubes for decontamination of sulphur mustard, J. Hazard. Mater. 167 (2009) 1192-1197.
16. T. H. Mahato, G. K. Pradad, B. Singh, A. R. Srivastava, K. Ganesan, J. Acharya, R.Vijayaraghavan, Reactions of sulphur mustard and sarin on V1.02O2.98 nanotubes, J. Hazard. Mater. 166 (2009) 1545-1549.
17. M. Sadeghi, S. Yekta, M. Hosseini, M. J. Taghizadeh, Study on the effective decontamination and hydrolysis of sulfur mustard agent simulant using tenorite (CuO) nanoparticles as a destructive catalyst, Iran. Chem. Commun. 3 (2015) 125-136.
18. G. K. Prasad, Decontamination of 2-chloro-ethyl phenyl sulphide using mixed metal oxide nanocrystals, J. Sci. Ind. Res. 69 (2010) 835-840.
19. V. Štengl, V Houšková, S. Bakardjieva, N. Murafa, M. Maříková, F. Opluštil, T. Němec, Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents, Mater. Charact. 61 (2010) 1080-1088.
20. A. Saxena, B. Singh, A. Sharma, V. Dubey, R.P. Semwal, M.V.S. Suryanarayana, V.K. Rao, K. Sekhar, Adsorption of dimethyl -methylphosphonate on metal impregnated carbons under static conditions, J. Hazard. Mater. 134 (1–3) (2006) 104–111.
21. A. Saxena, B. Singh, A.K. Srivastava, M.V.S. Suryanarayana, K. Ganesan, R. Vijayaraghavan, K.K. Dwivedi, Al2O3 nanoparticles with and without polyoxometalates as reactive sorbents for the removal of sulphur mustard, Micropor Mesopor Mater. 115 (3) (2008) 364–375.
22. https://zh.wikipedia.org/zh-tw/
23. 巫莫夫-化學戰劑概論www.mdc.idv.tw/mdc/nbc
24. Y. C. Yang, J. A. Baker, J. Richard Ward, “Decontamination of Chemical Warfare Agents”, Chem. Rev., 92 (1992) 1729-1743.
25. Joint Doctrine For Operations In Nuclear, Biological and Chemical (NBC) Environment.
26. 林杰樑,「最毒的化學毒劑-神經毒氣」,中時新聞專輯,民國90年11月26日
27. Y. C. Yang, J. A. Baker, J. Richard Ward, “Decontamination of Chemical Warfare Agents”, Chem. Rev., 92 (1992) 1729-1743.
28. https://zh.wikipedia.org/zh-tw/
29. TECHNICAL REPORT, “Formulations for the Decontamination and Mitigation of CB Warfare Agents, Toxic Hazardous Materials, Viruses, Bacteria and Bacterial Spors”, Sandia National Laboratory, 2001.
30. Y. C. Yang, L. L. Szafraniec, William T. Beaudry, Dennis K. Rohrbaugh, “Autocatalytic Hydrolysis of V-Type Nerve Agents”, J. Org. Chem., 361 (1996) 8407-8410.
31. A. V. Vorontsov, E. V. Savinov, L. Davydov, P. G. Smirniotis, “Photocatalytic destruction of gaseous diethyl sulfide over TiO2”, Applied Catalysis B: Environmental, 32 (2001) 11-24.
32. J. J. DeFrank, T.C Cheng, S. P. Harvey, and V. K. Rastogi, “Advanced Catalytic Enzyme System (ACES)-Dual Use Capabilities”, 23rd Army Science Conference, 2002.
33. I. Elashvili, “Enzymatic Analysis of Nerve Agents and their Degradation Products”, 23rd Army Science Conference, 2002.
34. http://tw.image.search.yahoo.com/search/images(肉毒桿菌圖片)
35. http://tw.image.search.yahoo.com/search/images(炭疽桿菌圖片)
36. http://tw.image.search.yahoo.com/search/images (伊波拉圖片)
37. http://tw.image.search.yahoo.com/search/images (天花病毒圖片)
38. B. L, Inglesby T, Peters CJ, Schmaljohn AL, Hughes JM, Jahrling PB, Ksiazek T, Johnson KM, Meyerhoff A, Eitzen EM, Hamburg M, Hauer Perl TM, Russell P, Tonat K. Hemorrhagic fever viruses as biological weapons: medical and public health management. Journal of the American Medical Association. 2002, 287 (18): 2391–405.
39. S. MR, B. JW. Other viral bioweapons: Ebola and Marburg hemorrhagic fever. Dermatologic clinics. 2004, 22 (3): 291–302.
40. Zubray, Geoffrey. Agents of Bioterrorism: Pathogens and Their Weaponization. New York, USA: Columbia University Press. 2013: 73–74.
41. Guide 103–06, Guide for the Selection of Chemical, Biological, Radiological, and Nuclear Decontamination Equipment for Emergency First Responders, U.S. Department of Homeland Security, 2007
42. 馬遠榮,低維奈米材料,科學發展月刊,382 (2004.10) 72-75.
43. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature, 359 (1992) 710-712.
44. P. Selvam, S. K. Bhatia, and C. G. Sonwane, Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves. Industrial & Engineering Chemistry Research, 40 (2001) 3237-3261.
45. E. Dündar-Tekkaya, and Y. Yürüm, Mesoporous MCM-41 material for hydrogen storage: A short review. International Journal of Hydrogen Energy, 41 (2016) 9789-9795.
46. C. T. Kresge and W. J. Roth, The discovery of mesoporous molecular sieves from the twenty year perspective. Chem. Soc. Rev., 2013, 42, 3663–3670.
47. 黃昱源、吳嘉文,無用之用的奈米孔洞材料,科學發展月刊,513 (2015.09) 16-21
48. S. H. Wu, C. Y. Mou, and H. P. Lin, Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42 (2013) 3862-3875.
49. Z. A. ALOthman, A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5 (2012) 2874-2902.
50. I. I. Slowing, J. L. Vivero-Escoto, C. W. Wu, and V. S. Y. Lin, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews, 60 (2008) 1278-1288.
51. G. W. Wagner, L. R. Procell, R. J. O’Connor, M. C. Shekar, Carnes L, Kapoor PN & Klabunde KJ, Reactions of VX, GB, GD and HD with nanosize Al2O3. Formation of aluminiumphosphates, J Am Chem Soc, 123 (2001) 1636-1644.
52. T. H, C. Z, Z. H, Zuo G & Zhang M, Effect of acid and base sites on the degradation of sulfur mustard over several typical oxides, Appl Catal B: Environ, 79 (2008) 323-333.
53. R. R, L. W, Decker S, Davidson C, Koper O, Zaikovski V, Volodin A, Reiker T & Klabunder K J, Consolidation of metal oxide nanocrystals. Reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials, J Am Chem Soc, 122 (2000) 4921-4925.
54. Winter M, Hamal D, Yang X, Kwen H, Jones D, Rajagopalan S & Klabunde K J, Defining reactivity of solid sorbents: What is the most appropriate metric, Chem Mater, 21 (2009) 2367-2374.
55. Klabunde K J, Free Atoms, Clusters and Nanoscale Particle (Academic press, SanDiego, CA) 1994, 2-100.
56. 無機化學學報 汪信,CHINESE JOURNAL OF INORGANIC CHEM IST RY Vol. 16, No. 2 Mar. , 2000
57. M. E. Martin, R. M,“Mesoporous metal oxides formed by aggregation of nanocrystals.Behavior of aluminum oxide and mixture with magnesium oxide in destructive adsorption of the chemical warfare surrogate 2-chloroethylethyl sulfide” Microporous and Mesoporous Materials 83 (2005) 47–50
58. R.M. Narske, K.J.Klabunde, S.Fultz, Langmuir 18(2002) 4819-4825
59. G. Medine, V. Zaikovski, K. J. Klabunde, J. Mater. Chem. 14(2004)757-763
60. D. B. Mawhinney, J.A. Rossin, K. Gerhart, J. T. Yates, JR., Langmuir 15(1999) 4789-4795.
61. S. C. Stout, S. C, “Adsorption, desorption and thermal oxideation of 2-CEES on nanocrystalline zeolites” Microporous and Mesoporous Materials 100 (2007) 77–86
62. S. Han, G. Y. Zhang, H. L. Xi, “Sulfated TiO2 Decontaminate 2-CEES and DMMP in Vapor Phase” Catal Lett (2008) 122:106–110
63. Y. Zafrani, M. Goldvaser, S. Dagan, L. Feldberg, D. Mizrahi, “Degradation of Sulfur Mustard on KF/Al2O3 Supports:Insights into the Products and the Reactions Mechanisms”J. Org. Chem. 2009, 74, 8464–8467
64. A. Saxena, A. K. Srivastava, A. Sharma, Beer Singh, “Kinetics of adsorption of 2-chloroethylethylsulphide on Al2O3 nanoparticles with and without impregnants”, J. Hazard. Mater. 169 (2009) 419–427.
65. V. Štengl, V Houšková, S. Bakardjieva, N. Murafa, M. Maříková, F. Opluštil, T. Němec, “Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents”, Mater. Charact. 61 (2010) 1080-1088.
66. Klabunde K J, Free Atoms, Clusters and Nanoscale Particle (Academic press, SanDiego, CA) 1994, 2-100.
67. G K Prasad, “Decontamination of 2 chloro ethyl phenyl sulphide using mixed metal oxide nanocrystals”, Journal of Scientific & Industrial Research Vol. 69, November 2010, pp. 835-840.
68. A. Roya, “Degradation of sulfur mustard and 2-chloroethyl ethyl sulfide on Cu–BTC metal organic framework”,Microporous and Mesoporous Materials Volume 162, 1 November 2012, Pages 207–212.
69. S. Dadvar, H. Tavanai, M. Morshed, and M. Ghiaci, “The Removal of 2-Chloroethyl Ethyl Sulfide Using Activated Carbon Nanofibers Embedded with MgO and Al2O3 Nanoparticles”, J. Chem. Eng. Data 2012, 57, 1456−1462.
70. A. K. Selvam, G. Nallathambi, “Mesoporous MgAl2O4 and MgTiO3 Nanoparticles Modified Polyacrylonitrile Nanofibres for 2-Chloroethyl Ethyl Sulfide Degradation”, Fibers and Polymers 16(2015), 2121-2129.
71. W. Chen, R. Ran, D. Weng, Xiaodong Wu, Jinyi Zhong, Anna Zhu, Shitong Han, “A facile ceria–zirconia binary oxide used for degradation of 2-chloroethyl ethyl sulfide”, J Mater Sci.Published online(2015).
72. Mahato TH, Prasad GK, Singh B, Batra K, Ganesan K, “Mesoporous manganese oxide nanobelts for decontamination of sarin, sulphur mustard and chloro ethyl ethyl sulphide”, Microporous Mesoporous Mater(2010) 132:15–21.
73. Ramacharyulu PVRK, Prasad GK, Kumar JP, Ganesan K, Singh B, Dwivedi K, “Photocatalytic decontamination of sulfur mustard over manganese oxide nanobelts”, Environ Progress Sustain Energy (2013) 32:1118–1123
74. Prasad GK, Mahato TH, Singh B et al, “Decontamination of sulfur mustard and sarin on titania nanotubes”, AlChE J. (2008)54:2957–2963.
75. A. T. Vu, S. Jiang, K. Ho, “Mesoporous magnesium oxide and its composites: Preparation,characterization, and removal of 2-chloroethyl ethyl sulfide”, Chemical Engineering Journal 269(2015)82-93.
76. M. Verma, V. K. Gupta, “Synthesis of sputter deposited CuO nanoparticles and their use for decontamination of 2-chloroethyl ethyl sulfide(CEES) ”,Journal of Colloid and Interface Science,438(2015) 102-109.
77. M. Sadeghia, S. Yektab “Study on the effective decontamination and hydrolysis of sulfur mustard agent simulant using tenorite (CuO) nanoparticles as a destructive catalyst”, Iran. Chem. Commun. 3 (2015) 125-136
78. S. Zhong, Y. J. ZHONG, “Degradation of Chemical Warfare Agents by Germanium-doped Nanosized TiO2 under Simulated Sunlight Irradiation”, Journal of Inorganic Materials”, Vol. 31 No. 4,1000-324X(2016)04-0427-07.
79. R. Wallace, Dimitrios A. Giannakoudakis, Marc Florent, Christopher J.Karwacki , and Teresa Bandosz, “Ferrihydrite deposited on cotton textiles as protection media against the chemical warfare agent surrogate(2-chloroethyl ethyl sulfide., J. Mater. Chem. A, 2017,5, 4972–4981
80. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., (1938), 60, 309
81. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., (1938), 60, 309.
82. http://baike.baidu.com/view/4280844.
83. Gao S. , Shan S. Y. , Li D. , Jia Q. M. , Polymer Materials Sciences and Engineering, (2012), 28(2), 60-63.
84. Ashkarran A. , A. , Estakhri S. , Hormozi Nezhad M. R. , Eshshi S. , Physics Procedia, (2013), 40, 76-83.
85. chem-guide
86. Market.cloud.edu.tw
87. D. Sarkar, C. K. Ghosh, S. Mukherjee, K. K. Chattopadhyay, Three dimensional Ag2O/TiO2 type-II (p-n) nanoheterojuncions for superior photocatalytic activity, ACS Appl. Mater. Interfaces. 5 (2013) 331-337.
88. X. Wang, H. F. Wu, Q. Kuang, R. B. Huang, Z. X. Xie and L. S. Zheng, Shape-dependent antibacterial activities of Ag2O polyhedral particles, Langmuir. 26 (2010) 2774–2778.
89. J. Roithova and D. Schroder, Gas-Phase Models for Catalysis:Alkane Activation and Olefin Epoxidation by the Triatomic Cation Ag2O+, J. Am. Chem. Soc. 129 (2007) 15311–15318.
90. W. Jiang, X. Wang, Z. Wu, X. Yue, S. Yuan, H. Lu, and B. Liang, Silver Oxide as Superb and Stable Photocatalyst under Visible and Near-Infrared Light Irradiation and Its Photocatalytic Mechanism, Ind. Eng. Chem. Res. 54 (2015) 832−841.
91. S. Ma, J. Xue, Y. Zhou, Zewu Zhang, Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity, J. Mater. Chem. A. 2 (2014) 7272–7280.
92. D. Sarkar, C. K. Ghosh, S. Mukherjee and K. K. Chattopadhyay, Three Dimensional Ag2O/TiO2 Type-II (p–n) Nanoheterojunctions for Superior Photocatalytic Activity, ACS Appl. Mater. Interfaces. 5 (2013) 331–337.
93. M. Sadeghi, S. Yekta, M. Hosseini, M. J. Taghizadeh, Study on the effective decontamination and hydrolysis of sulfur mustard agent simulant using tenorite (CuO) nanoparticles as a destructive catalyst, Iran. Chem. Commun. 3 (2015) 125-136.

無法下載圖示 全文公開日期 2023/01/16 (校內網路)
全文公開日期 2028/01/16 (校外網路)
全文公開日期 2028/01/16 (國家圖書館:臺灣博碩士論文系統)
QR CODE