簡易檢索 / 詳目顯示

研究生: 許紘瑋
Hung-Wei Hsu
論文名稱: 微型化可調雙模態帶通濾波器之研究
A Study on Miniaturized Dual-mode Bandpass Filters with Tunability
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 楊成發
Chang-Fa Yang
曾昭雄
Chao-Hsiung Tseng
瞿大雄
Tah-Hsiung Chu
鄭士康
Shyh-Kang Jeng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 94
中文關鍵詞: 人工合成傳輸線雙模態環形濾波器雙頻帶通濾波器諧波抑制頻帶可調
外文關鍵詞: artificial transmission line, dual-mode ring filter, dual-band bandpass filter, harmonic suppression, tunable passband
相關次數: 點閱:392下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將一款人工合成傳輸線,以對稱型式及非對稱型式實現,並將此傳輸線應用於環形共振器結構,以完成微型化雙模態帶通濾波器之設計。論文首先針對環形共振器的基本設計原理與架構作一討論。其次,則詳盡分析此人造合成傳輸線之設計原理、集總等效電路、模擬與量測結果、以及其非線性相位變化之特性。
    利用非對稱型式之人工合成傳輸線,吾人實現可抑制諧波效應之微型化雙模態單頻帶通濾波器,此帶通濾波器之電路面積僅有0.167 λg × 0.087 λg,相較於傳統環形帶通濾波器,其面積減少85.5%。藉由人工合成傳輸線及帶通濾波器之齒狀耦合結構所引入之多重傳輸零點,此濾波器可達頻寬諧波抑制效果。
    利用對稱型式之人工合成傳輸線,吾人則設計一款微型化可調雙模態雙頻帶通濾波器。此雙頻帶通濾波器之電路面積僅有0.186 λg ×0.123 λg,為傳統環形濾波器之22.5%。吾人藉由改變人工合成傳輸線之指插電容值,可有效控制傳輸線之截止頻率及非線性相位,亦可決定雙頻帶通濾波器之雙通帶中心頻率及其頻率比,冀以提升此微型化雙模態雙頻帶通濾波器之可調性及適應性。


    Novel miniaturized ring dual-mode bandpass filters are developed by utilizing artificial transmission lines in either symmetrical or asymmetrical form. The miniaturized designs are developed by replacing the transmission lines in the ring resonators by artificial ones. The essentials of the ring resonators, which include the design principles and structures, are first discussed. The artificial transmission lines are then investigated in detail in terms of the design concepts, lumped equivalent circuit model, simulated and measured results, and the nonlinear phase responses.
    A miniaturized ring dual-mode single-band bandpass filter with harmonic suppression characteristics is designed with the asymmetrical artificial transmission lines. The circuit size of the filter is merely 0.167 λg × 0.087 λg, which corresponds to a size reduction percentage of 85.5% as compared with a conventional design. By introducing multiple transmission zeros with the asymmetrical artificial transmission lines and the modified input/output saw-toothed coupling structures, the proposed filter demonstrates wideband harmonic suppression characteristics.
    A miniaturized ring dual-mode dual-band bandpass filter using symmetrical artificial transmission lines is also proposed and discussed. The circuit size of the filter is 0.186 λg × 0.123 λg, which is only 22.5% the size of a conventional ring dual-mode filter. By simply adjusting the interdigital capacitance values of the artificial transmission lines, the cut-off frequencies and nonlinear phase response of the artificial lines can be readily controlled, which in turn determine the center frequrncies of the first and second passbands of the filter and the associate frequency ratio between them. The tunability and flexibility of the proposed miniaturized ring dual-mode dual-band filter are therefore improved.

    摘要……...……………..…..……………...……………………………...i Abstract…………………....…………………………………………....iii 誌謝………………………………………………………………………v Contents……………………………...……………….…………...……vii List of Tables……………………………………………………………xi List of Figures…………………………………………………………xiii Chapter 1 Introduction 1 1.1 Motivation………………………………..…………………………1 1.2 Literatures survey…………………………………...……………....2 1.3 Contributions………………………………………………………..3 1.4 Chapter Outline…………………………………………………......4 Chapter 2 Fundamentals of Ring Resonators 7 2.1 Concept of the Ring Resonator…………………..…………………7 2.2 Regular Modes in a Ring Resonant…………………………………7 2.3 Split Modes in a Ring Resonant…………………………………….8 2.4 Microstrip Ring Dual-mode Bandpass Filters……………………..10 2.5 Summary…………………………………………………………..13 Chapter 3 Unit-Celled Artificial Transmission Lines 21 3.1 Introduction………………………………………………………. 21 3.2 Design Concept……………………………………………………22 3.2.1 Symmetrical Artificial Transmission Line………………...22 3.2.2 Asymmetrical Artificial Transmission Line……………….25 3.3 Extraction of the Lumped Equivalent Circuit Model……………...27 3.4 Simulation and Measurement………………………………..…….27 3.5 Summary…………………………………………………………..29 Chapter 4 Miniaturized Ring Dual-mode Bandpass Filter 39 4.1 Introduction………………………………………………………..39 4.2 Dual-mode Bandpass Filter Using Asymmetrical Artificial Transmission Line…………………………………………………39 4.2.1 Circuit Topology…………………………………………...39 4.2.2 Simulation and Measurement...............................................42 4.3 Dual-mode Bandpass Filter with Harmonic Suppression Characteristics……………………………………………………..43 4.3.1 Circuit Topology…………………………………………...43 4.3.2 Simulation and Measurement………………………….…..44 4.4 Summary…………………………………………………………..45 Chapter 5 Miniaturized Ring Dual-mode Dual-band Bandpass Filter 61 5.1 Introduction………………………………………………………..61 5.2 Dual-mode Dual-band Bandpass Filter Using Symmetrical Artificial Transmission Line………………………………………62 5.2.1 Circuit Topology…………………………………………...62 5.2.2 Simulation and Measurement………………………..…….63 5.3 Dual-mode Dual-band Bandpass Filter with Tunable Passband…..65 5.3.1 Frequency Tunability……………………………………....65 5.3.2 Simulation and Measurement…………………………..….67 5.3.3 Discussion…………………………………………………69 5.4 Summary…………………………………………………………..69 Chapter 6 Conclusions 83 6.1 Summary…………………………………………………………..83 6.2 Future Works………………………………………..……………..84 References 87 作者簡介 93

    [1] C. Y. Kung, Y. C. Chen, C. F. Yang, and M. P. Houng, ”2.4/5.2GHz dual-band bandpass filter using open-loop square-ring and insert coupling structure,” in 2007 IEEE Asia-Pacific Micro. Conf., pp. 1-4.
    [2] S. F. Chang, Y. H. Jeng, and J. L. Chen, “Dual-band step-impedance bandpass filter for multimode wireless LANs,” Electron. Lett., Vol. 40, No. 1, pp. 38-39, Jan. 2004.
    [3] C. F. Chen, T. Y Huang, and R. B. Wu, “Design of dual- and triple-passband filters using alternately cascaded multiband resonators,” IEEE Trans. Microwave Theory Tech., Vol. 54, No. 9, pp. 3550-3558, Sep. 2006.
    [4] C. W. Tang, C. W. Shen, and C. C. Tseng, “Design of multilayered broadband bandpass filter with LTCC technology,” Electron. Lett., Vol. 43, No. 21, pp. 1148-1149, Oct. 2007.
    [5] Y. C. Chiou, J. T. Kuo, and J. S. Wu, “Miniaturized dual-mode ring resonator bandpass filter with microstrip-to-CPW broadbside-coupled structure,” IEEE Microwave Wireless Comp. Lett., Vol. 18, No. 2, pp. 97-99, Feb. 2008.
    [6] C. H. Tseng, and Tatsuo Itoh, “Dual-band bandpass and bandstop filters using composite right/left-handed metamaterial transmission lines,” in 2006 IEEE MTT-S Int. Microwave Symp. Dig., pp. 931-934.
    [7] K. Li, D. Kurita, and T. Matsui, “Dual-band ultra-wideband bandpass Filter,” in 2006 IEEE MTT-S Int. Microwave Symp. Dig., pp. 1193-1196.
    [8] C. M. Tsai, H. M. Lee, and C. C. Tsai, “Planar filter design with fully controllable second passband,” IEEE Trans. Microwave Theory Tech., Vol. 53, No. 11, pp. 3429-3439, Nov. 2005.
    [9] F. Chang, and Q. X. Chu, “Tri-band bandpass filter using assembled multiband resonators,” in 2008 IEEE Asia-Pacific Micro. Conf., pp. 1-4.
    [10] P. Troughton, “High Q-factor resonators in microstrip,” Electron. Lett., Vol. 4, No. 24, pp. 520-522, Nov. 1968.
    [11] P. Troughton, “Measurement technique in microstrip,” Electron. Lett., Vol. 5, No. 2, pp. 25-26, Jan. 1969.
    [12] K. Chang, “Microwave ring circuits and antennas,” (John Wiley & Sons, 1996).
    [13] M. Guglielmi and G. Gatti, “Experimental investigation of dual-mode microstrip ring resonator,” Proc. 20th Eur. Microwave Conf., pp. 901-906, Sep. 1990.
    [14] M. L. Chuang, “Miniaturized ring coupler of Arbitrary reduced size,” IEEE Microwave Wireless Comp. Lett., Vol. 15, No. 1, pp. 16-18, Jan. 2005.
    [15] G. K. Gopalakrishnan, B. W. Fairchild, C. L. Yeh, C. S. Park, K. Chang, M. H. Weichold, and H. F. Taylor, “Experimental investigation of microwave- optoelectronic interactions in a microstrip ring resonator,” IEEE Trans. Microwave Theory Tech., Vol. MTT-39, No. 12, pp. 2052-2060, Dec. 1991.
    [16] Z. Ding, L. Fan, and K. Chang, “A new type of active antenna for coupled Gunn oscillator driven spatial power combining arrays,” IEEE Microwave Guided Wave Lett., Vol. 5, No. 8, pp. 264-266, Aug. 1995.
    [17] I. Wolf, and N. Knoppik, “Microstrip ring resonator and dispersion measurements on microstrip lines,” Electron. Lett., Vol. 7, No. 26, pp. 779-781, Dec. 30 1971.
    [18] C. Ho, “Slotline, CPW ring circuits and waveguide ring cavities for coupler and filter applications,” Ph.D. dissertation, Texas A&M University, College Station, May 1994.
    [19] G. K. Gopalakrishnan, “Microwave and optoelectronic performance of hybrid and monolithic microstrip ring resonator circuits,” Ph.D. dissertation, Texas A&M University, College Station, May 1991.
    [20] I. Wolf, “Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,” Electron. Lett., Vol. 8, No. 12, pp. 302-323, Jun. 1972.
    [21] C. Ho, and K. Chang, “Mode phenomenons of the perturbed annular ring elements,” Texas A&M University Report, College Station, Sep. 1991.
    [22] T. Okoshi, and T. Miuoshi, “Analysis of planar circuit,” Ann. Rep. Eng. Res. Int., Univ. of Tokyo, Tokyo, Vol. 30, pp. 153-168, 1971 (In English).
    [23] G. K. Gopalakrishnan, and K. Chang, “Bandpass characteristics of split-modes in asymmetric ring resonators,” Electron. Lett., Vol. 26, No. 12, pp. 774-775, Jun. 7, 1990.
    [24] M. Matsuo, H. Yabuki, and M. Makimoto, “Dual-mode stepped-impedance ring resonator for bandpass filter applications,” IEEE Trans. Microwave Theory Tech., Vol. 49, No. 7, pp. 1235-1240, Jul. 2001.
    [25] M. Matsuo, H. Yabuki, M. Sagawa, and M. Makimoto, ”Fundamental characteristic of the coupling between the orthogonal resonant modes in a ring resonator,” IEICE, Tokyo, Japan, Tech. Rep. MW95-101, Nov. 1995.
    [26] B. T. Tan, J. J. Yu, S. T. Chew, M. S. Leong, and B. L. Ooi, “A miniaturized dual-mode ring bandpass filter with a new perturbation,” IEEE Trans. Microwave Theory Tech., Vol. 53, No. 1, pp. 343-348, Jan. 2005.
    [27] A. Görür, C. Karpuz, and M. Akpinar, “A reduced-size dual-mode bandpass filter with capacitively loaded open-loop arms,“ IEEE Microwave Wireless Comp. Lett., Vol. 13, No. 9, pp. 385-387, Sep. 2003.
    [28] J. S. Hong and M. J. Lancaster, “Microstrip bandpass filter using degenerate modes of a novel meander loop resonator,” IEEE Microwave Guided Wave Lett., Vol. 5, No. 11, pp. 371-372, Nov. 1995.
    [29] A. Görür and C. Karpuz, “Miniature dual-mode microstrip filters,” IEEE Microwave Wireless Comp. Lett., Vol. 17, No. 1, pp. 37-39, January 2007.
    [30] R. J. Mao, X. H. Tang, and F. Ziao, “Miniaturized dual-mode ring bandpass filters with patterned ground plane,” IEEE Trans. Microwave Theory Tech., Vol. 55, No. 7, pp. 1539-1547, July. 2007.
    [31] J. X. Chen, T. Y. Yum, J. L. Li, Q. Xue, “Dual-mode dual-band bandpass filter using stacked-loop structure,” IEEE Microwave Wireless Comp. Lett., Vol. 16, No. 9, pp. 502-504, Sep. 2006.
    [32] M. H. Weng, S. Wu, S. B. Jhong, Y. C. Chang, and M. S. Lee, “A novel compact dual-mode filter using cross-slotted patch resonator for dual-band applications,” in IEEE MTT-S Int. Dig., pp. 921-924, Jun. 2007.
    [33] Ch. Y. Kung, Y. C. Chen, C. F. Yang, and M. P. Houng, “Novel dual-mode dual-band filters using coplanar-waveguide-fed ring resonators,” IEEE Trans. Microwave Theory Tech., Vol. 55, No. 10, pp. 2183-2190, Oct. 2007.
    [34] T. H. Huang, H. J. Chen, C. S. Chang, L. S. Chen, Y. H. Wang, and M. P. Houng, “A novel compact ring dual-mode filter with adjustable second-passband for dual-band applications,” IEEE Microwave Wireless Comp. Lett., Vol. 16, No. 6, pp. 360-362, Jun. 2006.
    [35] I. Toyoda, T. Hirota, T. Hiraoka, and T. Tokumitsu, “Multilayer MMIC branch-line coupler and broad-side coupler,” in Microw. and Millimeter Wave Monolithic Circuits Symp. Dig., Albuquerque, NM, pp. 79-82, Jun. 1-3, 1992.
    [36] Y. C. Chiang, and C. Y. Chen, “Design of a wide-band lump-element 3-dB quadrature coupler,” IEEE Trans. Microw. Theory Tech., Vol. 49, No. 3, pp. 476-479, Mar. 2001.
    [37] F. R. Yang, K. P. Ma, Y. Qian, and T. I. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE Trans. Microwave Theory Tech., Vol. 47, No. 8, pp. 1509-1514, Aug. 1999.
    [38] J. Bonache, G. Sisó, M. Gil, A. Iniesta, J. García-Rincón, and F. Martín, “Application of composite right/left handed (CRLH) transmission lines based on complementary split ring resonators (CSRRs) to the design of dual-band microwave components,” IEEE Microwave Wireless Comp. Lett., Vol. 18, No. 8, pp. 524-526, Aug. 2008.
    [39] K. O. Sun, S. J. Ho, C. C. Yen, and D. van der Weide, “A branch-line coupler using discontinuous microstrip lines,” IEEE Microwave Wireless Comp. Lett., Vol. 15, No. 8, pp. 519-520, Aug. 2005.
    [40] K. W. Eccleston, and S. H. M. Ong, “Compact planar microstrip line branch-line and rat race coupler couplers,” IEEE Trans. Microwave Theory Tech., Vol. 51, No. 10, pp. 2119-2125, Oct. 2003.
    [41] T. G. Ma and Y. T. Cheng, “A miniaturized multilayered marchand balun using coupled artificial transmission lines,” in IEEE Microw. Wireless Compon. Lett., Jul. 2009.
    [42] T. G. Ma, C. W. Wang, R. C. Hua, and J. W. Tsai, “A modified quasi-Yagi antenna with a new compact microstrip-to-coplanar strip transition using artificial transmission lines,” in IEEE Trans. Antennas Propagat., Sep. 2009.
    [43] T. G. Ma and Y. T. Cheng, "Miniaturized broadside coupler using coupled slow-wave artificial lines,” Electron. Lett., Vol. 45, No. 10, pp. 511-512, May, 2009.
    [44] C. W. Wang, T. G. Ma and C. F. Yang, “A new planar artificial transmission line and its applications to a miniaturized butler matrix,” IEEE Trans. Microwave Theory Tech., Vol. 55, No. 12, pp. 2792–2801, Dec. 2007.
    [45] R. Garg, I. Bahl, P. Bhartia, and K. Gupta, Microstrip Lines and Slotlines, Artech House 2nd Ed., 1996.
    [46] J. S. Hong, and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: Wiley, 2001.
    [47] C. A. Allen, K. M. K. H. Leong, and T. Itoh, “Dual-mode composite-right/left- handed transmission line ring resonator,” Electron. Lett., Vol. 42, No. 2, pp. 96-97, Jan. 2006.

    QR CODE