簡易檢索 / 詳目顯示

研究生: 林永祥
Yung-Hsiang Lin
論文名稱: 銲接構造用鑄鋼SCW450雙相區熱處理之低溫衝擊韌性之研究
A Study of Intercritical Heat Treatment on Low Temperature Impact Toughness of Steel Castings for SCW450 Welded Structures
指導教授: 雷添壽
Tien-Shou Lei
口試委員: 鄭偉鈞
Wei-Chun Cheng
林本源
Ben-Yuan Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 98
中文關鍵詞: 鑄鋼低溫韌性雙相區熱處理
外文關鍵詞: Cast steel, Low temperature toughness, Intercritical heat treatment
相關次數: 點閱:200下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
銲接構造用鑄鋼SCW 450為澆鑄量相當大的鑄造用材料,由於經常需要以銲接方式與其它材料進行接合,因此對其機械性質的規定在SC 450之外,額外要求其低溫衝擊韌性於0 ℃衝擊時,其衝擊值最小須達27J。
  研究旨在探討在肥粒鐵-沃斯田鐵雙相區沃斯田鐵化後以空冷及爐冷的熱處理製程對於SCW 450低溫衝擊韌性的影響,並尋找較佳的製程及參數。研究方法包括,以OM及SEM觀察鑄鋼的顯微組織,及於0 ℃的衝擊試驗及破斷面型態觀察。另外觀察鑄鋼於920 ℃沃斯田鐵化時,其原沃斯田鐵晶粒尺寸與持溫時間的關係。
研究結果顯示熱處理後的波來鐵分佈型態、肥粒鐵晶粒尺寸皆是影響鑄鋼低溫韌性的重要因素;原沃斯田鐵的晶粒尺寸隨持溫時間增加而粗大化。

關鍵字:鑄鋼、低溫韌性、雙相區熱處理


Abstract
Cast steel SCW 450 for welded construction has been cast in a considerable volume, in most cases designed bonding together with other materials by welding, so other than the mechanical properties of SC 450 , it requirements of a low temperature impact toughness at 0 ℃with a impact value at least up to 27 J.
The study was designed to explore the effect of intercritical heat treatment on the low temperature impact toughness of cast steel SCW 450. Experimental methods include the furnace cooling and air cooling after austenitizing treatment, the OM and SEM examination of the microstructure of cast steel, impact testing at 0 ℃ and the fracture surface of impact specimens. The relationship of austenite grain size of SCW450 at 920 ℃ with holding times was studied also.
The results show that the pearlite distribution pattern after heat treatment and the ferrite grain size are the most important factors which affect the low temperature impact toughness of SCW450; the original austenite grain size is coarsening with the increase of holding times.

Keywords:Cast steel, Low temperature toughness, Intercritical heat treatment

目錄 摘要..........................................................I Abstract......................................................II 誌謝..........................................................III 目錄..........................................................IV 圖索引........................................................VI 表索引........................................................VIII 第一章前言....................................................1 第二章文獻探討................................................3 2.1 原沃斯田鐵晶粒尺寸........................................3 2.2 合金元素的影響............................................6 2.3 鑄鋼的熱處理..............................................9 2.4 臨界溫度間熱處理..........................................10 2.5 沃斯田鐵化溫度與持溫時間的影響............................12 2.6 鑄鋼中之麻田散鐵..........................................13 2.7 鑄鋼中之波來鐵............................................14 2.8 介在物....................................................16 2.9 破壞模式與衝擊溫度........................................17 第三章實驗方法................................................28 3.1 實驗流程與材料備製........................................28 3.2 熱處理....................................................29 3.3 機械性質試驗..............................................29 3.4 顯微組織分析..............................................31 第四章結果與討論..............................................42 4.1 原沃斯田鐵晶粒尺寸與持溫時間關係..........................42 4.2 正常化、780 ℃爐冷及雙相區的顯微組織......................43 4.2.1 波來鐵分佈型態..........................................43 4.2.2 晶粒尺寸的變化..........................................44 4.2.3 顯微組成含量的變化......................................44 4.3 機械性質比較..............................................46 4.3.1 780 ℃熱處理及正常化熱處理的機械性質....................46 4.3.2臨界溫度間熱處理的機械性質...............................47 第五章結論....................................................70 參 考 文 獻...................................................72 附錄A OM金相圖集.............................................77 附錄B SEM金相圖集............................................81 作者簡介......................................................86

[1] 馮春源,「鋼結構用鋼材與銲材」,鋼結構會刊,中華民國鋼結構協會,第三十五期,第3-10頁,台北 (2009)。
[2] CNS 7143,「銲接結構用鑄鋼件」,經濟部標準檢驗局 (1994)。
[3] 陳繁雄,「原沃斯田體晶粒之重現檢視」,金屬熱處理,第五十六期,pp27-32,台北(1998)。
[4] A. S. Kumar, B. R. Kumar, G. L. Datta and V. R. Ranganath, “Effect of microstructure and grain size on fracture toughness of a micro-alloyed steel”, Materials Science and Engineering A, Vol. 527, pp. 954-960 (2010)
[5] C. F. Wang, M. Q. Wang, J. Shi, W. Hui and H. Dong, “Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel”, J. Mater. Sci. Technol., Vol.23, No.5, pp. 659-664 (2007)
[6] A. Güral, B. Bostan and A. T. Özdemir, “Heat treatment in two phase region and its effect on microstructure and mechanical strength after welding of a low carbon steel”, Materials and Design , Vol.28, pp. 897-903 (2007)
[7] M. El-bealy and B. G. Thomas, “Prediction of dendrite arm spacing for low alloy steel casting processes”, Metallurgical and Material Transactions B, Vol. 27, pp. 689-693 (1996)
[8] F. M. Al-Abbasi, “Micromechanical modeling of ferrite-pearlite steels”, Materials Science and Engineering A, Vol. 527, pp. 6904-6916 (2010)
[9] 黃振賢,機械材料,文京圖書有限公司,第182-203頁,台北(1990)。
[10] M. A. Maleque, Y. M. Poon, H. H. Masjuki, “The effect of intercritical heat treatment on the mechanical properties of AISI 3115 steel”, Journal of Materials Processing Technology, 153-154, pp. 482-487 (2004)
[11] G. Krauss, Steels: Heat Treatment and Processing Principles, ASM, OH, pp. 107-114 (1990)
[12] Y. S. Ahn, H. D. Kim, T. S. Byun, Y. J. Oh, G. M. Kim and J. H. Hong, “Application of intercritical heat treatment to improve toughness of SA508 Cl.3 reactor pressure vessel steel”, Nuclear Engineering and Design, Vol. 194, pp. 161-177 (1999)
[13] S. J. Lee and Y. K. Lee, “Prediction of austenite grain growth during austenitization of low alloy steels”, Materials and Design, Vol. 29, pp. 1840-1844 (2008)
[14] S. Marpoulos, S. Karagiannis and N. Ridley, “The effect of austenitising temperature on prior austenite grain size in a low-alloy steel”, Materials Science and Engineering A, 483-484, pp. 735-739 (2008)
[15] 林國璋,「低錳鑄鋼之淬火-回火熱處理與金相顯微組織及機械性質關係之研究」,碩士論文,逢甲大學,台中 (2002)。
[16] R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, International Thomson Publishing, pp. 190-194 and pp. 642 (1991)
[17] Z. Fan, “The grain size dependence of ductile fracture toughness of polycrystalline metals and alloys”, Materials Science and Engineering A, Vol. 191, pp. 73-83 (1995)
[18] 陳皇鈞,鋼-顯微組織與機械性質,全華科技圖書公司,台北,第64-67頁、第102-129頁、第242-262頁 (1985) 。
[19] S. K. Putaunde, C. Martis and J. Boileau, “Influence of austempering temperature on the mechanical properties of a low carbon low alloy steel”, Materials Science and Engineering A, Vol. 528, pp. 5053-5059 (2011)
[20] W. D. Callister, JR., Materials Science and Engineering an Introduction,4ed., John Wiley and Sons, pp. 289-316 (1996)
[21] B. Garbarz and F. B. Pickering, “Effect of pearlite morphology on impact toughness of eutectoid steel containing vanadium”, Materials Science and Technology, Vol. 4, pp. 328-334 (1988)
[22] A. M. Elwazri, P. Wanjara and S. Yue, “The effect of microstructural characteristics of pearlite on the mechanical properties of hypereutectoid steel”, Materials Science and Engineering A, Vol. 404, pp. 91-98 (2005)
[23] K. K. Ray and D. Mondal, “The effect of interlamellar spacing on strength of pearlite in annealed eutectoid and hypoeutectoid plain carbon steels”, Acta Metallurgica et Materialia, Vol. 39, pp. 2201-2208 (1991)
[24] 蔡明欽,鋼顯微組織與性質,五南圖書出版股份有限公司,台北,第245-273頁 (2004)。
[25] W. M. Garrison Jr. and A. L. Wojcieszynski, “A discussion of effect of inclusion volume fraction on the toughness of steel”, Materials Science and Engineering A, Vol. 464, pp. 321-329 (2007)
[26] D. R. Askeland, The science and engineering of materials, Thomson, Toronto, pp. 231 and pp. 475 (2006)
[27] A. Nazari and A. A. Milani, “Ductile to brittle transition temperature of functionally graded steels with crack arrester configuration”, Materials Science and Engineering A, Vol. 528 pp. 3854–3859 (2011)
[28] 機械工程手冊編輯委員會,機械工程手冊5-材料測試與分析,五南圖書出版股份有限公司,台北,第178-183頁 (2002)。
[29] C. C. Menzemer, T. S. Srivatsan, R. Ortiz, Meslet Al-Hajri and M. Petraroli, “Influence of temperature on impact fracture behavior of an alloy steel”, Materials and Design, Vol. 22, pp. 659-667 (2001)
[30] CNS 3033,「金屬材料衝擊試驗試片」,經濟部標準檢驗 (2000)。
[31] Metals Handbook, Vol. 7, pp. 70-75 (1968)
[32] 洪祝寶,「銲接構造用鑄鋼SCW450 低溫衝擊韌性之研究」,碩士論文,國立台灣科技大學,台北 (2011)。
[33] 楊昇翔,「熱處理對低合金鎳鉻鉬鑄鋼低溫衝擊韌性之影響」,碩士論文,國立台灣科技大學,台北 (2010)。

QR CODE