簡易檢索 / 詳目顯示

研究生: 陳仁文
REN-WUN Chen
論文名稱: 合成含苯並咪唑側基之聚醯亞胺質子傳導膜及其性質研究
Synthesis and Characterization of Polyimides Containing Pendent Benzimidazoles Groups for Proton Exchange Membrane
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 蔡大翔
王健珍
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 苯並咪唑聚醯亞胺質子傳導膜
外文關鍵詞: proton exchange membrane, polyimide, benzimidazole
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究成功合成具有benzimidazole側基之聚醯亞胺(PI)共聚物,其固有黏度範圍在 1.08~1.96dL/g 之間,均可塗佈成具有韌性之薄膜,這些共聚物有好的熱安定性,於氮氣下10 %裂解溫度皆有500℃以上、以及高的玻璃轉換溫度(Tg約在 300 ℃),聚合物尚未摻雜磷酸的抗張強度大於110 MPa,但是當摻雜磷酸後,薄膜受到磷酸的膨潤,機械強度會大幅下降。藉由甲基側基進行交聯反應,形成交聯 PI 共聚物,交聯後 PI 共聚物因受交聯鍵結,形成高分子鏈緊密堆積,導致磷酸摻雜量下降,但仍能有足夠高的質子傳導度,並能維持好的機械性質。質子傳導度隨溫度與磷酸摻雜量增加而增加,本研究所合成PI共聚物的質子傳導度幾乎都比m-PBI高,這結果顯示導入benzimidazole環在側基比在主鏈更有利於提高質子傳導度,例如交聯前後之BPBI7mBI2PF0.5DMB0.5在160℃時之質子傳導度都高於m-PBI (54.1 mS/cm)分別為77.3 mS/cm與68.5 mS/cm,很有潛力應用於中溫型燃料電池的質子傳導膜。


A series of copolyimides (PIs) with pendant benzimidazole had been synthesized. They had inherent viscosities in the range of 1.08~1.96 dL/g, and they could form tough and flexible films. The PIs exhibited high thermal stability with 10% decomposition temperature more than 500℃ in nitrogen, and their glass transition temperature is around 300℃. These films exhibited good mechanical properties with tensile stress exceeded 110 MPa. However, the mechanical properties of PI significantly decreased when phosphoric acid doping level increased. This situation can be improved via crosslinking reaction of methyl group,
cross-linked PI would form close packing ,and it led to decrease of phosphoric acid doping level, but it could still maintain high proton conductivity.
The proton conductivity of phosphoric acid doped PI was dependent on doping PA level and temperature. The proton conductivity of BPBI7mBI2PF0.5DMB0.5 and C5- BPBI7mBI2PF0.5DMB0.5were 77.3 and 68.5 mS/cm at 160℃, respectively. The proton conductivity of PI and C-PI were significantly higher than m-PBI (54.1 mS/cm). Thus, these polyimides (PIs) with pendant benzimidazole membranes could be the promising materials alternative to m-PBI membrane for medium-temperature fuel cells applications because of their high proton conductivity and good thermal stability.

摘要.............................................I Abstract.........................................II 目錄.............................................III 圖索引............................................VI 表索引............................................VIII 第一章 緒論.......................................1 1.1前言..........................................1 1.2燃料電池的介紹.................................3 1.2.1 燃料電池的發展..............................3 1.2.2 燃料電池的特色..............................6 1.2.3 燃料電池的種類..............................8 1.2.4 燃料電池的原理及應用........................12 1.3直接甲醇燃料電池介紹(Direct Methanol Fuel Cell, DMFC)...14 1.3.1 直接甲醇燃料電池的原理及構造.................15 1.3.2直接甲醇燃料電池的核心.......................16 1.4中溫型燃料電池簡介.............................18 1.4.1 中溫型 (150~250 ℃) 燃料電池的優點..........19 1.4.2 聚苯咪唑薄膜摻雜磷酸的質子傳導機制...........20 1.5 交聯劑介紹...................................22 1.6 文獻回顧.....................................26 1.7研究動機與研究內容.............................37 第二章 實驗......................................40 2.1實驗藥品......................................40 2.2聚醯亞胺共聚物實驗程序..........................42 2.2.1單體合成.....................................43 2.2.2合成聚醯亞胺共聚物(PIs).......................44 2.3 聚合物之物性與化性分析.........................47 第三章 結果與討論.................................52 3.1 PIs 的合成...................................52 3.2固有黏度......................................54 3.3溶解度測試.....................................55 3.4交聯反應證明...................................57 3.4.1 DSC 量測與溶解度證明........................57 3.4.2FT-IR分析...................................62 3.5熱性質分析.....................................64 3.6 PI共聚合物組成對磷酸摻雜量的效應................68 3.7膨潤度的測試...................................72 3.8 質子傳導度分析.................................74 3.8.1溫度對質子傳導度的效應.........................74 3.8.2化學構造對質子傳導度的效應.....................78 3.9 機械性質量測...................................79 3.9.1未摻雜磷酸薄膜機械性質量測......................79 3.9.2摻雜磷酸薄膜機械性質量測........................81 3.10 氧化安定性測試.................................83 第四章 結論.........................................85 第五章 參考文獻.....................................88

1. J. Larminie, D. Andrew, “Fuel Cell Systems Explained (2nd Edition)”, John Wiley & Sons Inc, 1, 2003.
2. 溫武義,燃料電池技術,全華科技圖書有限公司,1-12,2004。
3. 黃鎮江,燃料電池,滄海圖書有限公司,12,2008。
4. 陳維新,能源概論,高立圖書有限公司,8-24,2009。
5. S. J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Int. J. Hydrogen Energy, 35, 9349, 2010.
6. O. Stonehart, J. Appl. Electrochem., 22, 995, 1992.
7. S. Surampudi, S. R. Narayanan, E. Vamos, J. Power Sources, 47, 377, 1994.
8. M. P. Hogarth, G. A. Hards, Platinum Maters Rev., 40, 150, 1996.
9. J. Braz. Chem. Soc., 14, 503, 2003
10. C. H. Parka, C. H. Leeb, M. D. Guivera, Y. M. Leea, Prog. Polym. Sci., 36, 1443, 2011.
11. B. Smitha, S. Sridhar, A. A. Khan, J. Membr. Sci., 259, 10, 2005.
12. H. J. Kim, T. W. Lim, Y. S. Park, K. S. Shin, J. C. Lee, Macromol. Chem. Phys., 208, 2293, 2007.
13.T. H. Kim, T. W. Lim, J. C. Lee, J. Power Source, 172, 172, 2007.
14. Q. F. Li, R. H. He, J. O. Jensen, N.J. Bjerrum, J. Electrochem. soc., 150, 1599, 2003.
15.Y. L. Ma, J. S. Wainright, M. H. Litt, R. F. Savinell, J. Electrochem. Soc., 151, 8, 2004.
16. J. A. Asensio, E. M. Sanchezab, P. G.Romero, Chem. Soc. Rev., 39, 3210, 2010.
17. B. Xing, O. Savadogo, Journal of New Materials for Electrochemical Systems, 2, 95, 1999.
18. M. Kawahara, J. Morita, M. Rikukawa, K. Sanui, N. Ogata, Electrochimica Acta, 45, 1395, 2000.
19. M. Han, G. Zhang, Z. Liu, S. Wang, M. Li, J. Zhu, H. Li, Y. Zhang, C. M. Lewb, H. Na, J. Mater. Chem., 21, 2187, 2011.
20. C.,Liu,X.,Li,S.,Zhang,Z.,Li,Y.,Cao,X., Jing,Solid State Ionics, 261, 67, 2014.
21.N.,Tan,G.,Xiao,D.,Yan, Chem.Mater, 22, 1022, 2010.
22.Q.,Li,J.,Liu,J.,Xu,H.,Ni,S.,Wang,Z.,Wang, J.Memb .Sci, 509, 173, 2016.
23. Y. Sakaguchi, K. Kitamura, M. Yamashita, S. Takase, K. Takasugi, and Y. Akitomo, Macromolecules, 45, 5403, 2012.
24. K. S. Lee, M. H. Jeong, J. P. Lee, J. S. Lee, Macromol, 42, 584, 2009.
25. C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, and M. Pineri, Polymer, 42, 359, 2001.
26. Y. Yin, S. Hayashi, O. Yamada, H. Kita, and K. I. Okamoto, Macromolecular rapid communications, 26, 696, 2005.
27. H. Bai, H. Zhang, Y. He, J. Liu, B. Zhang, and J. Wang, Journal of Membrane Science, 454, 220, 2014.
28.陳泰安,合成新型含苯咪唑側基之聚醯亞胺與含苯並唖唑側基之聚苯咪唑及其性質研究,台灣科技大學化工系碩士論文,2014。
29. J. A. Mikroyannidis, Polymer, 37, 2715, 1996.
30.F. Wang, M. Hickner, Y.S. Kim, T.A. Zawodzinski, J.E. McGrath, J. Membr. Sci., 197, 231, 2002.
31. J.A., Mader, B.C., Benicewicz, Macromolecules, 43,6706, 2010.
32. 陳思源,合成新型含苯並噁唑側基之聚苯咪唑於中溫型燃料電池質子傳導膜之性質研究,台灣科技大學化工系碩士論文,2013。

無法下載圖示 全文公開日期 2022/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE