簡易檢索 / 詳目顯示

研究生: 陳昱丞
Yu-Cheng Chen
論文名稱: 雙面階層奈米結構元件應用於光學嵌件射出成形異質結合研究
Research of Double-Sided Nanostructures of Insert Molding of Heterogeneous Bonding for Optical Applications
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 楊申語
Sen-Yeu Yang
黃國政
Kuo-Cheng Huang
陳士勛
Shih-Hsun Chen
莊程媐
Cheng-Xi Chuang
陳炤彰
Chao-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 200
中文關鍵詞: 雙面階層陽極氧化孔洞結構嵌件射出成形超親水性異質結合
外文關鍵詞: Anodic Aluminum Oxide (AAO) with double-sided two-stair nano pores, Insert injection molding (IIM), Super hydrophilic, Heterogeneous bonding
相關次數: 點閱:169下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨為在玻璃基板上製作出雙面階層陽極氧化鋁結構嵌件,利用階層陽極氧化鋁奈米孔洞結構使其一表面具有超親水性,另一表面作為嵌件射出成形製程使玻璃與聚碳酸酯(PC)鏡片異質結合之介質,製作出具有超親水性表面之異質結合平面透鏡及非球面透鏡產品,用作透鏡組最外側之透鏡群。研究方法為預先針對玻璃基板上的陽極氧化鈦及陽極氧化鋁進行實驗與分析,選定陽極氧化鋁製作穩固結合之陽極氧化奈米孔洞結構。接著透過製程參數控制,雙面鍍鋁玻璃分別進行多次陽極氧化處理參數實驗,以三次陽極氧化製程製作之階層奈米孔洞結構,接觸表面積提升10倍,表面與水之接觸角小於10度,經由高溫熱退火(400 ℃)使光穿透衰減由36 %降至14 %,以此參數製作6吋均勻陽極氧化晶圓,進行裁切製備80至90片嵌件。由模流分析(Moldex3D)結果比較,傳統射出成形製程(IM)與射出壓縮成形製程(ICM),結果為IM製程之產品變形量及殘留應力較小;由異質結合強度檢測得知,正向結合強度由0.16 MPa提升至1.84 MPa,側向結合強度由0.03 MPa提升至0.70 MPa;由光穿透率分析結果得知,本研究之雙面階層陽極氧化鋁異質結合產品光穿透率達70 %。未來可應用於複合式塑膠玻璃異質結合光學元件。


    This research aims to develop a double-sided two-stair (DSTS) nano pores structure of anodic aluminum oxide (AAO) on glass substrate insert for hybrid optical elements. One side glass substrate surface with nano structure can achieve super hydrophilic, and another side is used as a heterogeneous bonding between glass substrate and Polycarbonate (PC) lens by the insert injection molding (IIM) process. The hybrid lens with super hydrophilic and heterogeneous bonding are fabricated to obtain plano lens and aspherical lens. Both anodic titanium oxide (ATO) and AAO have been tested preliminarily and AAO is selected as DSTS candidate. With double-sided sputtering aluminum on glass substrate, multi-phase anodize process has been performed by control anodizing parameters for increasing the glass substrate surface area as 10 times. The surface energy shows that the contact angle of AAO with two-stair nano pores structure is under 10 degree for super hydrophilic surface. The light attenuation decreased from 36 % to 14 % after thermal annealing at 400 oC after AAO processing. Then, some 6-inch double-sided AAO substrates have been fabricated based on the same parameters. Each 6-inch DSTS AAO wafer can be sliced into 80 to 90 pieces as part insert for heterogeneous bonding by injection molding process. From simulation results of insert injection molding (IIM) by Moldex3D, injection molding (IM) and injection compression molding (ICM) have been compared and the hybrid lens by IM has smaller warpage and residual stress that those by ICM. The tensile strength tests for heterogeneous bonding show that the normal bonding strength increases from 0.16 MPa to 1.84 MPa and lateral bonding strength increases from 0.03 MPa to 0.70 MPa. Finally, the light transmittance of hybrid lens with heterogeneous bonding of DSTS nano pores can attain 70 %. Research results can be applied on outermost of hybrid lens with image sensor.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 X 表目錄 XVII 第一章 導論 1 1.1 研究背景 1 1.2 研究目的 6 1.3 研究方法 7 1.4 論文架構 8 第二章 文獻回顧 10 2.1 陽極氧化鈦模板製程 10 2.2 陽極氧化鋁模板製程 16 2.3 陽極氧化物微結構表面特性 24 2.4 射出壓縮微結構光學元件 29 2.5 異質結合相關專利回顧 34 2.6 歷屆陽極氧化製程研究成果應用 38 2.7 文獻回顧總結 47 第三章 光學規格及製程原理介紹 49 3.1 光學規格設計 49 3.2 陽極氧化製程介紹 52 3.2.1陽極氧化鈦製程 52 3.2.2陽極氧化鋁製程 54 3.3 射出成形製程介紹 56 3.3.1嵌件射出成形製程 56 3.3.2射出壓縮成形製程 58 3.4 實驗材料介紹 59 3.4.1 B270超白玻璃 59 3.4.2聚碳酸酯 60 第四章 實驗耗材設備與預實驗 62 4.1 製程耗材與設備 62 4.1.1實驗耗材 62 4.1.2陽極氧化製程設備 66 4.1.3射出成形製程設備 69 4.2 量測設備 73 4.3 陽極氧化鈦結構預實驗 74 4.3.1鍍鈦玻璃四點探針實驗 74 4.3.2拉曼實驗 75 4.3.3陽極氧化鈦參數實驗 77 4.3.4陽極氧化鈦結果與討論 81 4.4 鍍鋁晶圓預實驗 82 4.4.1鍍鋁玻璃四點探針實驗 82 4.4.2化學機械拋光實驗 82 4.4.3表面粗糙度實驗 84 4.4.4鍍鋁玻璃晶圓實驗結果與討論 85 第五章 實驗方法 86 5.1 實驗方法 86 5.2 實驗A1-2吋陽極氧化鋁結構參數實驗 86 5.2.1 2吋雙面陽極氧化鋁結構參數實驗 87 5.2.2 SEM與EDS孔洞分析 90 5.2.3接觸角量測實驗 96 5.2.4退火實驗 97 5.2.5光穿透率量測 98 5.3 實驗A2-6吋雙面陽極氧化鋁嵌件製備實驗 100 5.3.1 6吋雙面陽極氧化鋁結構模板製備 101 5.3.2 6吋雙面陽極氧化鋁玻璃裁切 102 5.4 實驗B-模流分析及成形實驗 103 5.4.1產品實體網格建製 104 5.4.2模擬參數設計 105 5.4.3模擬結果分析 107 5.4.4短射實驗 116 5.4.5成形視窗 119 5.5 實驗C1-射出成形參數實驗及平面透鏡量測實驗 122 5.5.1嵌件射出成形實驗 122 5.5.2射出成形參數實驗 124 5.5.3產品正向結合力試驗 125 5.5.4產品側向結合力試驗 127 5.5.5產品光穿透率量測 130 5.6 實驗C2-非球面透鏡量測實驗 131 5.6.1調製轉換函數(MTF) 132 5.6.2色偏分析 135 5.6.3非球面異質結合產品應用實驗 137 5.7 成像品質綜合討論 139 5.7.1陽極氧化鋁階層孔洞結構 139 5.7.2嵌件射出成形 140 5.7.3光彈量測 140 第六章 結論與建議 142 6.1 結論 142 6.2 建議 144 參考文獻 146 附錄A 塑膠材料PC AD-5503特性表 152 附錄B 射出機詳細規格 153 附錄C 嵌件射出成形模具設計圖 154 附錄D 照度量測系統暗箱設計圖 156 附錄E 拋光液粒徑分析結果 157 附錄F 量測設備規格 158 附錄G 雙面陽極氧化治具 163 附錄H 正向拉伸試片 164 附錄I 側向拉伸試片 165 附錄J 製程理論及技術 166 作者簡介 179

    [1]黃昱源,吳嘉文,"粉末登場:無用之用的奈米孔洞材料",科學發展,台北,台灣,2015。
    [2]陳敬典,"自動駕駛車發展現況與未來趨勢",財團法人車輛研究測試中心產業發展處,車輛研測專刊,彰化,台灣,2018。
    [3]陳健次,"透過產業趨勢與專利地圖解析ADAS技術發展",財團法人車輛研究測試中心企劃推廣處,車輛研測專刊,彰化,台灣,2017。
    [4]游嘉瑋,"嵌件射出成形於含次微米結構玻璃與聚碳酸酯之異質結合研究",碩士論文,國立臺灣科技大學機械工程系,台北,台灣,2018。
    [5]P. Hoyer, "Formation of a Titanium Dioxide Nanotube Array", Langmuir, 12, 1411-1413, 1996.
    [6]G. K. Mor, O. K. Varghese, M. Paulose, C. A. Grimes, " Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films ", Advanced Functional Materials, 15, 1291-1296, 2005.
    [7]林金雄,"氧化鋁與氧化鈦奈米管的製作與應用研究",博士論文,國立交通大學材料科學與工程研究所,新竹,台灣,2008。
    [8]Z. Su and W. Zhou, "Formation, microstructures and crystallization of anodic titanium oxide tubular arrays", J. Mater. Chem., 19, 2301-2309, 2009.
    [9]D. Fang, S. Chen, M. Jiang, Q. Li, Z. Luo, L. Liu, C. Xiong, "Growth mechanisms of multilayered anodic-titanium-oxide nanotube membranes", Materials ScienceinSemiconductorProcessing, 18, 2014.
    [10]N. B. Kondrikov, P. L. Titov, S. A. Schegoleva, M. A. Khorin, "Influence of formation conditions on the level of arrays ordering of anodic titanium oxide nanotubes", Physics Procedia, 86, 37 – 43, 2015.
    [11]Q. Dou, P. Shrotriya, W. Li, K.R. Hebert, "Stress-generating electrochemical reactions during the initial growth of anodic titanium dioxide nanotube layers", Electrochimica Acta, 295, 418-426, 2020.
    [12]F. Keller, M. S. Hunter and D. L. Robinson, "Structural Features of Oxide Coatings on Aluminum", The Electrochemical Society, Journal of The Electrochemical Society, 100, 411– 419, 1953.
    [13]W.S. Im, Y.S. Cho, G.S. Choi, F.C. Yu, D.J. Kim, "Stepped carbon nanotubes synthesized in anodic aluminum oxide templates", Diamond and Related Materials, 13, 1214–1217, 2004.
    [14]N.Q. Zhao, X.X. Jiang, C.S. Shi, J.J. Li, Z.G. Zhao, X.W. Du, "Effects of anodizing conditions on anodic alumina structure", J Mater Sci, 42, 3878–3882, 2007.
    [15]J.T. Kwon, H.G. Shin, Y.H. Seo, B.H. Kim, H.G. Lee, J.S. Lee, "Simple fabrication method of hierarchical nano-pillars using aluminum anodizing processes", Current Applied Physics 9 e81–e85, 2009.
    [16]B. Wang, G. Xu, P. Cui, "Preparation of large-area porous anodic alumina on insulating substrates", Materials Letters, 93, 36–38, 2013.
    [17]C.V. Manzano, J. Martín, M.S. Martín-González, "Ultra-narrow 12 nm pore diameter self-ordered anodic alumina templates", Microporous and Mesoporous Materials, 184, 177–183, 2014.
    [18]K.M. Chahrour, N.M. Ahmed, M.R. Hashim, N.G. Elfadill, W. Maryam, M.A. Ahmad, M. Bououdina, "Effects of the voltage and time of anodization on modulation of the pore dimensions of AAO films for nanomaterials synthesis", Superlattices and Microstructures, 88, 489-500, 2015.
    [19]K.M. Chahrour, N.M. Ahmed, M.R. Hashim, N.G. Elfadill, A.M. Al-Diabat, M. Bououdina, "Influence of wet etching time cycles on morphology features of thin porous Anodic Aluminum oxide (AAO) templatefor nanostructure’s synthesis", Journal of Physics and Chemistry of Solids, 87, 1–8, 2015.
    [20]W.J. Ho, P.Y. Cheng and K.Y. Hsiao, "Plasmonic Silicon Solar Cell Based on Silver Nanoparticles Using Ultra-Thin Anodic Aluminum Oxide Template", Applied Surface Science, 354, 25-30, 2015.
    [21]H. Han, S.J. Park, J.S. Jang, H. Ryu, K.J. Kim, S. Baik and W. Lee, "In situ determination of the pore opening point during wet-chemical etching of the barrier layer of porous anodic aluminum oxide: nonuniform impurity distribution in anodic oxide", ACS Appl. Mater. Interfaces 2013, 8, 3441-3448, 2020.
    [22]A.Y.Y. Ho, H. Gao, Y.C. Lam, and I. Rodrı´guez, "Controlled Fabrication of Multitiered Three-Dimensional Nanostructures in Porous Alumina", Adv. Funct. Mater., 18, 2057–2063, 2008.
    [23]J. Ye, Q. Yin, Y. Zhou, "Superhydrophilicity of anodic aluminum oxide films: From “honeycomb” to “bird's nest” ", Thin Solid Films, 517 6012–6015, 2009.
    [24]J. Yang, J. Wang, C.W. Wang, X. He, Y. Li, J.B. Chen, F. Zhou, "Intermediate wetting states on nanoporous structures of anodic aluminum oxide surfaces", Thin Solid Films, 562, 353–360, 2014.
    [25]S. Ateşa, E. Baran, B. Yazıcı, "The nanoporous anodic alumina oxide formed by two-step anodization", Thin Solid Films, 648, 94–102, 2018.
    [26]G. Wang, Y. Wan, B. Ren, Z. Liu, "Bioactivity of micropatterned TiO2 nanotubes fabricated by micro-milling and anodic oxidation", Materials Science & Engineering C, 95, 114–121, 2019.
    [27]H. Lia, G. Wang, J. Niu, E. Wang, G. Niu, C. Xie, "Preparation of TiO2 nanotube arrays with efficient photocatalytic performance and super-hydrophilic properties utilizing anodized voltage method", Results in Physics, 14, 102499, 2020.
    [28]C.H. Wu, W.S. Chen, "Injection molding and injection compression molding of three-beam grating of DVD pickup lens", Sensors and Actuators A, 125, 367–375, 2006.
    [29]H. Ito and H. Suzuki, "Micro-features formation in injection compression molding", J. Solid Mech. Mater. Eng., 3, 320–327, 2009.
    [30]K. Nagato, T. Hamaguchi, and M. Nakao, "Injection compression molding of high-aspect-ratio nanostructures", J. Vac. Sci. Technol. B, 29(6), 06FG10-1–06FG10-4, 2011.
    [31]M. Roeder, P. Schilling, D. Hera, T. Guenther and A. Zimmermann, "Influences on the Fabrication of Diffractive Optical Elements by Injection Compression Molding", J. Manuf. Mater. Process., 2, 2018.
    [32]M. Roeder, M. Drexler, T. Rothermel, T. Meissner, T. Guenther and A. Zimmermann, "Injection Compression Molded Microlens Arrays for Hyperspectral Imaging", Micromachines 2018, 9, 2019.
    [33]K.N. Lee, "Method and Structure for Fixing Plastic Element to Aluminum Alloy Element", TW Pat., I331560, 2010.
    [34]Y.M. Shyu, Y.Y. Huang, H.Y. Shin, Y.S. Chu, "High Concentration Photovoltaic Condensing Lens and Manufacturing Method Thereof", TW Pat., I402994, 2013.
    [35]T.C. Mao, "Combination Method Between Different Materials and Combination Assembly Thereof", TW Pat., 201410431, 2014.
    [36]張文桐,蘇忠義,"陶瓷塑料複合體及其製造方法",中華民國專利,I665174,2019。
    [37]H.P. Chang, W.R. Chen, H.W. Chiang, P. Chang, Y.C. Huang, J. Zhang, Y.J. Liu, "Composite of Inorganic Non-Metal and Resin and Method for Making the Same", TW Pat., I653146, 2020.
    [38]何光朗,"次微米陽極氧化鋁孔洞製作光學元件之研究",碩士論文,國立臺灣科技大學機械工程系,台北,台灣,2008。
    [39]詹景翔,"多孔質陽極氧化鋁模板製作似蟬翼抗反射結構",碩士論文,國立臺灣科技大學機械工程系,台北,台灣,2009。
    [40]陳建志,"鍍鋁矽晶圓之多孔質陽極氧化鋁結構製作大面積抗反射結構製程研究",碩士論文,國立臺灣科技大學機械工程系,台北,台灣,2010。
    [41]陳宏昱,"大尺寸次波長抗反射結構功能性光學元件研究",碩士論文,國立臺灣科技大學機械工程系,台北,台灣,2011。
    [42]李佳柔,"整合次波長微結構之菲涅爾聚光元件於射出成形研究",碩士論文,國立臺灣科技大學機械工程系,台北,台灣,2012。
    [43]徐睿明,"利用次波長結構添加下轉換螢光粉製作複合型抗反射鏡片",碩士論文,國立臺灣科技大學機械工程系,台北,台灣,2012。
    [44]張紹華,"結合次微米孔洞陽極氧化鋁基板與導氧功能性薄膜製作導氧元件之研究",碩士論文,國立臺灣科技大學機械工程系,台北,台灣,2013。
    [45]蕭博文,"複合式多孔質陽極氧化鋁塑膠平板之射出成形分析研究",碩士論文,國立臺灣科技大學機械工程系,台北,台灣,2014。
    [46]花嘉駿,"射出成形在含陽極氧化鋁次微米結構玻璃與聚甲基丙烯酸甲酯之異質結合研究",碩士論文,國立臺灣科技大學機械工程系,台北,台灣,2015。
    [47]耿繼業、何建娃,"幾何光學",全華圖書,新北市,台灣,2013。
    [48]趙凱華、鍾錫華,"光學",儒林圖書有限公司,台北,台灣,1996。
    [49]K.K. Sharma, "Optics: principles and applications", Academic Press, 2006.
    [50]F.L. Pedrotti, L.S. Pedrotti and L.M. Pedrotti, "Introduction to Optics", Pearson Prentice Hall, Vol. 3, 267-269, 2006.
    [51]S. Ebnesajjad, C. Ebnesajjad, "Surface Treatment of Materials for Adhesive Bonding", William Andrew, 2014.
    [52]M. Hasanzadeh, V. Mottaghitalab, R. Ansari, B. Hadavi Moghadam and A. K. Haghi, "Issues in Production of Carbon Nanotubes and Related Nanocomposites: A Comprehensive Review", Cellulose Chem. Technol., 49 (3-4), 237-257, 2015.
    [53]J. Takadoum, "Materials and Surface Engineering in Tribology", Wiley-ISTE, 2008.
    [54]P.C. Chen, S.J. Hsieh, C.C. Chen, and J. Zou, "The Microstructure and Capacitance Characterizations of Anodic Titanium Based Alloy Oxide Nanotube", Hindawi Publishing Corporation Journal of Nanomaterials Volume 2013, Article ID 157494, 9 pages, 2013.
    [55]S. Kalpakjian, S.R. Schmid, "Manufacturing Engineering and Technology", Prentice Hall, 2005.
    [56]"B 270® i Ultra-White Glass", SCHOTT AG, Available from: https://www.schott.com/d/corporate/2b6492a9-edb4-4d77-a067-8d97dfd9fc4c/1.0/row-schott-b270i-ultra-white-glass-datenflyer-view-2019-05-24.pdf
    [57]B. Dereu, "Raw and Finished Materials: A Concise Guide to Properties and Applications", Momentum Press, LLC, 2012.
    [58]A. Kausar, "A review of filled and pristine polycarbonate blends and their applications", Journal of Plastic Film & Sheeting, Vol. 34(1) 60–97, 2017.
    [59]"Material Property Data", MatWeb: Online Materials Information Resource, Available from: http://www.matweb.com/search/DataSheet. aspx?MatGUID=314e93c622e94e649f0bcf8a945ee2cd
    [60]K.Y. Law, H. Zhao, "Surface Wetting: Characterization, Contact Angle, and Fundamentals", Springer International Publishing Switzerland , 2016.

    QR CODE