簡易檢索 / 詳目顯示

研究生: 黃靖媛
Jing-Yuan Huang
論文名稱: 超深冷處理程序對於不同鋼材微觀結構與硬度及耐磨耗能力的影響
Effect of cryogenic process on the microstructure and hardness and resistant of the different steel
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 鄭偉鈞
Wei-chun Cheng
丘群
Chun Chiu
鍾俊輝
Chun-hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 192
中文關鍵詞: 超深冷處理磨耗表面溫度臨場回火軟化模具鋼
外文關鍵詞: Cryogenic treatment, wear surface temperature, in situ temper softening, die steel
相關次數: 點閱:231下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討高碳工具鋼(SK 2)及高鉻模具鋼(SKD 11)在不同的熱處理程序下對其機械性質的影響。實驗結果顯示淬火處理後立即進行超深冷處理有效消除殘留沃斯田鐵。穿透式電子顯微鏡對於顯微結構進行分析,在高碳工具鋼(SK 2)下找到Fe3C、M7C3型碳化物,在高鉻模具鋼(SKD 11)下找到Fe3C、M7C3、Cr23C6型碳化物,淬火處理完立即進行超深冷處理十二小時,可以促進碳化物的析出,進而提升材料的硬度。
    進行不同溫度的回火軟化實驗結果顯示,高鉻模具鋼(SKD 11)其回火軟化的行為較不明顯。因此進行乾磨耗時,因摩擦表面高溫而產生的臨場回火軟化的現象減少,進而使高鉻模具鋼(SKD 11)的耐磨耗能力優於高碳工具鋼(SK 2)。其中,淬火處理後進行回火200 °C一小時,再進行24小時超深冷處理之試片,其耐磨耗能力均優於其他處理程序的試片。


    This study discusses the impact of high carbon tool steel (SK 2) and high chromium die steel (SKD 11) under different heat treatment programs for its mechanical properties. Experimental results show that immediately doing cryogenic treatment effectively eliminate residual austenite after quenching. Microstructure analysis using Transmission Electron Microscope showed that the Fe3C、M7C3 carbide in the tool steel and Fe3C、M7C3、Cr23C6 carbide in the die steel. Twelve hour cryogenic treatment immediately after quenching treatment can promote the carbides precipitation, and thus enhance the hardness of the material.
    Temper softening experimental results show that temper softening behavior of high chromium die steel (SKD 11) is not obvious.Therefore, when in situ temper softening phenomenon of SKD 11 can be reduced in dry wear test, thereby enhance the wear resistance. Among all heat treatment programs, the best wear resistance can be achieved by quenching, one hour tempering at the temperature of 200 °C, and 24 hour cryogenic processing.

    摘要I AbstractII 誌謝III 目錄IV 表目錄VI 圖目錄VII 第一章 前言1 第二章 文獻探討3 2.1強化機構3 2.1.1固溶強化(solid solution strengthening)3 2.1.2細晶粒強化(fine grain size strengthening)4 2.1.3析出強化(precipitation strengthening)4 2.1.4麻田散體強化(martensite strengthening)4 2.1.5散佈強化(dispersion strengthening)4 2.2淬火(quenching)5 2.3回火處理(tempering)6 2.4超深冷處理特性及目的7 2.4.1超深冷處理相關研究8 2.5麻田散鐵相變化11 2.6磨耗機構12 2.6.1刮磨磨耗(abrasive wear)12 2.6.2黏著磨耗(adhesive wear)14 2.6.3氧化磨耗(oxidative wear)15 2.6.4 剝層磨耗(delamination Wear)16 2.6.5表面疲勞磨耗(surface fatigue wear)17 第三章 實驗儀器及程序19 3.1實驗儀器19 3.1.1磨耗試驗機19 3.1.2溫度量測20 3.2分析儀器20 3.3試片規格23 3.4熱處理製程26 3.5試片回火軟化實驗29 3.6磨耗試驗30 3.9殘留沃斯田鐵計算41 3.10實驗步驟44 第四章 結果與討論46 4.1顯微結構觀察及分析46 4.1.1高碳工具鋼(SK 2)顯微結構觀察及分析46 4.1.2高鉻模具鋼(SKD 11)顯微結構觀察及分析86 4.2不同熱處理製程之硬度分佈124 4.2.1高碳工具鋼(SK 2)硬度分佈124 4.2.2高鉻模具鋼(SKD 11)硬度分佈130 4.2.3高碳工具鋼(SK 2)、高鉻模具鋼(SKD 11)硬度分佈136 4.3耐磨耗能力評估139 4.3.1高碳工具鋼(SK 2)、高鉻模具鋼(SKD 11)硬度與回火溫度的關係139 4.3.2高碳工具鋼(SK 2)耐磨耗能力評估143 4.3.3高鉻模具鋼(SKD 11)耐磨耗能力評估163 4.3.4高碳工具鋼(SK 2)、高鉻模具鋼(SKD 11)耐磨耗能力評估182 第五章結論與建議184 5.1結論184 5.2未來研究方向與建議186 文獻回顧187 附錄一190 附錄二192

    1.P.I.Patil, “Comparison of Effects of Cryogenic Treatment on Different Types of Steels: A Review. ” International Conference in Computational Intelligence (ICCIA) , 2012.
    2.劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,工程材料科學,全華科技圖書股份有限公司,1996。
    3.G.E.Dieter, “Mechanical metallurgy.” London, McGraw-Hill, 1988.
    4.黃振賢,金屬熱處理,新文京開發出版有限公司,台灣,1985。
    5.楊銘文,碳工具鋼超深冷處理後耐磨性研究,碩士論文,臺灣大學,臺北,臺灣,2006。
    6.蘇洋右,利用金相分析及X光繞射分析量測鋼材殘留沃斯田鐵量之研究,金屬熱處理pp.34-44, 2011。
    7.A.Akhbarizadeh, “Effects of cryogenic treatment on wear behavior of D6 tool steel. ” Materials & Design 30: pp3259-3264, 2009.
    8.J.Y.Huang, “Microstructure of cryogenic treated M2 tool steel.“Materials Science and Engineering A339: pp241-244, 2003.
    9.Marcos Pérez, “The effect of deep cryogenic treatments on the mechanical properties of an AISI H13 steel.”Materials Science and Engineering: A 624:pp 32-40, 2015.
    10.Shaohong Li. “Hardness and toughness investigations of deep cryogenic treated cold work die steel.“ Cryogenics 50:pp89-92,
    2010.
    11.M.Koneshlou, “Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel.“ Cryogenics 51: pp55-61, 2011.
    12.J.Wang, “Effects of high temperature and cryogenic treatment on the microstructure and abrasion resistance of a high chromium cast iron.“ Journal of Materials Processing Technology 209: pp3236-3240, 2009.
    13.楊顯榮,工程材料學,全華圖書股份有限公司,2011。
    14.H.Sin, N. Saka, N. P.Suh, “Abrasive wear mechanisms and the grit size effect,” Wear, 55, pp.163-190, 1979.
    15.K.H. Zum Gahr, “Microstructure and Wear of material.”, Tribology Series, vol.10, 1987.
    16.A.R.Lansdown, “MATERIAL TO RESIST WEAR.”, 1986.
    17.Horst C. Tribology : a systems approach to the science and technology of friction, lubrication and wear, Amsterdam, Elsevier Scientific Pub. Co., New York, 1978.
    18.H.So, “The mechanism of oxidational wear.”Wear, vol.184, pp. 161-167, 1995.
    19.T.F.J.Quinn, Sullivan J.L., D.M. Rowson, “ Origins and development of oxidational wear at low ambient temperatures, ” Wear, vol. 94, pp. 175-191, 1984.
    20.T.F.J.Quinn, Winer W.O., “An experimental study of the “hot-spots” occurring during the oxidational wear of tool steel on sapphire, Journal of Tribology, vol. 109, pp. 315-320, 1987.
    21.L.F.Cai, Zhang Y.Z, Shi L.K., “Microstructure and formation mechanism of titanium matrix composites coating on Ti-6Al-4V by laser cladding.” Rare Metals Vol.26, No4, pp.342-346, 2007.
    22.T.F.J.Quinn, “Computional methods applied to oxidational wear.”Wear vol. 199, pp. 169-180, 1996.
    23.T.F.J.Quinn, “Oxidational wear modeling partⅠ.”Wear, vol. 153, pp. 179-200, 1992.
    24.T.F.J.Quinn, “Oxidational wear modeling partⅡThe general theory ofoxidational.”wear, vol. 175, pp.199-208, 1994.
    25.T.F.J.Quinn, “Oxidational wear modeling partⅢ. The effects of speed and elevated temperatures.” Wear, vol. 216, pp. 262-275, 1998.
    26.T.F.J.Quinn, “ The oxidational wear of low alloy steels.” Tribology International, vol. 35, pp. 694-715, 2002.
    27.M.Vardavoulias, “The role of hard second phases in the mild oxidational wear mechanism of high-speed steel-based materials.” Wear, vol. 173, pp. 105-114, 1994.
    28.G.W.Stachowiak, “Engineering tribology.”Amsterdam, Elsevuer, New York, 2005.
    29.K.H.Zum Gahr, “Microstucture and wear of material.” Tribology series,vol.10, 1987.
    30.楊春欽,磨潤學原理與應用,科技圖書股份有限公司,1983。
    31.楊春欽,摩擦與磨耗,科技圖書股份有限公司,1984。
    32.李明奇,製程參數對中碳鋼表面被覆SiC粉末耐磨耗性能之影響,碩士論文,臺灣科技大學,臺北,台灣1998。
    33.陳建同,經雷射處理後之金屬表面之磨耗機構研究,國立台灣大學碩士論文,1992。
    34.J.F.Archard, “The Temperature of Rubbing Surface.” Wear, Vol-2, pp438-455, 1959.
    35.G.W.Stachowiak, and A.W. Batchelor, “Engineering Tribology.”, Tribology Series 24, Elsevier Press, 1993.
    36.H and M Analytical Services Inc, “Retained Austenite Analysis.”, 2003.
    37.ASTM E975, “Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation1.” ASTM International.
    38.M.Koneshlou, “Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel. ”Cryogenics 51(1): 55-61, 2011.
    39.余煥騰,金屬熱處理學,六合出版社,1987。
    40.余東曉,鋼材的氧化磨耗行為,碩士論文,臺灣大學,臺北,台灣,2001。

    QR CODE