簡易檢索 / 詳目顯示

研究生: 吳俊煌
Chun-Huang Wu
論文名稱: 雙波長雷射與電致吸收調變器之積體化設計與製作
Design and Fabrication of Integrated Dual-Wavelength Laser Arrays with EAMs
指導教授: 李三良
San-Liang, Lee
口試委員: 曹恆偉
Hen-Wai, Tsao
劉政光
Cheng-Kuang, Liu
徐世祥
Shih-Hsiang, Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 100
中文關鍵詞: 分佈反饋式電致吸收積體化雙波長多模干涉雙量子井
外文關鍵詞: DFB, EAM, Integrate, Dual-wavelength, MMI, Dual-Quantum Well
相關次數: 點閱:242下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本論文主要利用雙量子井結構將各光學主被動元件積體化,所積體化之元件包含分佈反饋式雷射(DFB)及電致吸收調變器(EAM)的結合,並利用多模干涉耦合器將波長分別為1.58 μm及1.6 μm之雙雷射陣列進行耦合,最後串接半導體光放大器(SOA)將光源輸出做放大,使之能應用於無色光源技術的局端中,幫助分波多工被動光網路降低雷射發射源的成本,並避免離散元件在各別封裝上的耦合損耗。
  雙量子井中均採用具壓縮應力的磷砷化銦鎵材料,其中一組量子井規畫為光增益波段,經由模擬與實作成法布里-比洛雷射,得知其發光增益峰值能隙介於1.58 μm至1.6 μm之間,故將DFB雷射及SOA的材料能隙設計於此波段,並規劃兩組雷射發光波長分別座落於1.58 μm與1.6 μm;另一組量子井,則設計材料吸收峰值位於1.51 μm,利用量子侷限史塔克效應會使之紅位移的特性,控制1.58 μm處是否為吸收峰值,故我們將MMI波導與EAM波長規劃於此波段,以期能達成高效率的電致吸收調變雷射(EML)。
  為提升本元件雙波長位置精準度,本論文利用繞射測量的方式,準確控制全像術曝光製作出來的光柵,預測之布拉格波長為1.58 μm,與最後製作完成的DFB雷射發光波長1.585 μm,誤差值小於5 nm。就元件實作成果,在DFB雷射元件的特性方面,共振腔長約800 μm的雷射臨限電流約為100 mA,最大功率可達2.3 mW,旁模抑制比約大於20 dB。在EAM元件方面,其調變在1.58 μm處尚有調變效果。而在EML之間利用離子佈植製作的電性隔離,其電阻值約在3 kΩ。
  應用三維光束傳輸法模擬量子井波導元件的光場,可分析波導模態、波導彎曲損耗及MMI元件自我成像位置,來設計MMI耦合器,分析整體結果其插入損耗約為0.506 dB。最後在MMI的實作成果方面,於本論文是利用SOA當作光源及光偵測器,量測實際製作出的元件,得到插入損耗約為0.706 dB。而耦光比約為61.69/38.31,應為製程上的誤差所致。


 This thesis focuses on the monolithically integration of dual-wavelength distributed feedback (DFB) laser array, semiconductor optical amplifier (SOA), electro-absorption modulator (EAM) and multi-mode interference (MMI) coupler by using the dual multi-quantum wells (DQWs) platform. The benefit of this device is to provide optical amplification, optical modulation and optical propagating/combining on the same chip without suffering from the coupling issue between individual elements. This dual-wavelength light source can be used to simultaneously generate upstream/downstream signals for applications in the colorless wavelength-division multiplexing passive optical network (WDM-PON) systems.
 The design of DQWs is the key to the success of this device. The DQWs consist of two sets of compressively strained InGaAsP multi-quantum well (MQW). Upper MQW layers are to provide optical gain for DFB lasers and SOAs covering wavelengths between 1.58 μm and 1.6 μm while the bottom MQW layers are to provide optical absorption at 1.58μm of wavelength for revised biased EAMs. The bottom MQW set is also designed as the passive waveguide material for MMI couplers. 1X2 MMI coupler is designed to combine two signals generated from two parallel DFB lasers with low insertion loss using three-dimensional Beam Propagation Method.
 We successfully applied holography exposure to produce dual-wavelength grating for DFB lasers and verify the grating period using diffractive measurement. We found that the error of DFB wavelength was less than 5 nm. Fabricated DFB laser has a threshold current of around 100 mA, a maximum output power of 2.3 mW, a side-mode suppression ratio (SMSR) of around 20 dB and a contact resistance of around 3Ω to 10Ω, respectively. Fabricated EAM is able to provide optical modulation at wavelength band between 1.54 μm to 1.56 μm. Electrical isolation between DFB laser and EAM region is done by ion implantation and the resistance between each other is about 3 kΩ.
Several SOAs are used as on-chip light sources and detectors to characterize the insertion loss and coupling ratio of fabricated MMI couplers. The results determine that the insertion loss was about 0.706 dB, which is close to the calculated value of 0.506 dB, while the coupling ratio was about 61.69/38.31. Further lithography and etching process optimization is needed to achieve equal coupling ratio of the couplers.

中文摘要 i Abstract ii 致謝 iii 目錄 v 圖目錄 vii 表目錄 x 第一章 導論 1 1-1 前言 1 1-2 研究動機 3 1-3 研究方向 6 1-4 論文架構 8 第二章 理論與積體化製程技術簡介 9 2-1 DFB分佈反饋式雷射簡介 9 2-2 EAM電致吸收調變器簡介 12 2-2-1 前言 12 2-2-2 法蘭茲-凱爾帝希效應 14 2-2-3 量子侷限史塔克效應 15 2-2-4 調變速度 16 2-3 積體化製程技術簡介 19 2-4 MMI多模干涉器簡介 24 2-5 光積體電路簡介 27 2-5-1 二維波導 27 2-6-2 三維波導 28 第三章 元件模擬及MMI光路模擬 30 3-1 簡介及模擬軟體 30 3-2 雙量子井結構材料設計與模擬 31 3-2-1量子井結構設計重點簡介 31 3-2-2量子井結構模擬 33 3-3 電致調變量子井材料吸收 36 3-4 MMI多模干涉器光路模擬 37 3-4-1 波導結構與模態 37 3-4-2 彎曲波導長度 38 3-4-3 波導串音 39 3-4-4 MMI分光器模擬 40 3-4-5 MMI耦合器模擬 42 第四章 元件製程設計及測試 44 4-1 光罩設計 44 4-2 製程流程 47 4-3 製程結果與討論 64 第五章 元件量測 67 5-1 光柵週期的測量 67 5-2光功率-電流-電壓量測 69 5-3 光譜量測 71 5-4 電性隔離量測 74 5-5 吸收-光電流量測 75 5-6 MMI損耗量測 77 第六章 結論 80 6-1 成果與討論 80 6-2 未來研究方向 81 參考文獻 83 作者簡介 87

[1] 林漢璿,「可降低雷利散射及後向反射之新型WDM-PON架構」,碩士論文,國立台灣科技大學,民國97年。
[2] J. H. Yu,N. Kim, and B. W. Kim, “Remodulation Schemes with Reflective SOA for Colorless DWDM PON,” J. Optical Networking, vol. 6, no. 8, pp. 1041-1054, 2007.
[3] F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-Wavelength InAlGaAs–InP Laterally Coupled Distributed Feedback Laser,” IEEE Photonic Technology Letter, vol. 18, no. 24, pp. 2563-2565, 2006.
[4] 姚久琳,「設計與製作新型高速可調式雷射」,博士論文,國立台灣科技大學,民國95年。
[5] C. L. Yao, S. L. Lee, I. F. Jang, and W. J. Ho, “Wavelength Selectable Lasers With Bragg-Wavelength-Detuned Sampled Grating Reflectors,” J. Lightwave Technology, vol. 24, no. 9, pp. 3480-3489, 2006.
[6] L.A. Coldren and S.W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” John Wiley & Sons, Inc., 1995.
[7] 潘彥廷,「設計與製作低密度分波多工雷射陣列之技術」,博士論文,國立台灣科技大學,民國97年。
[8] F. Koyama and K. Iga, “Frequency Chirping in External Modulators,” J. Lightwave Technology, vol. 6, no. 1, pp.87-93, 1988.
[9] D. A. B.Miller, D. S. Chemla, and T. C. Damen, “Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect,” Physical Review Letters, vol. 53, no.22, pp. 2173-2176, 1984.
[10] 吳奇璋,「分佈反饋式雷射與行波式電致吸收調變器積體化元件製作」,碩士論文,國立台灣科技大學,民國98年。
[11] G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-Speed Traveling-Wave Electroabsorption Modulator - Design and Analysis,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 7, 1999.
[12] Y. Akage, K. Kawano, S. Oku, R. Iga, H. Okamoto, Y. Miyamoto, and H. Takeuchi, "Wide bandwidth of over 50GHz Travelling-Wave Electrode Electro-Absorption Modulator Integrated DFB Lasers,” IEEE Electronics Letters, vol. 37, no. 5, pp. 299-300, 2001.
[13] H. Fukano, T. Yamanaka, M. Tamura, and Y. Kondo, "Very-Low-Driving-Voltage Electroabsorption Modulators Operating at 40 Gb/s," J. Lightwave Technology, vol. 24, no. 5, 2006.
[14] W. Kobayashi, K. Tsuzuki, Y. Shibata, T. Yamanaka, Y. Kondo, and F. Kano,“10-Gb/s, 80-km SMF Transmission From 0 to 80oC by Using L-Band InGaAlAs MQW Electroabsorption Modulated Laser With Twin Waveguide Structure,” J. lightwave technology, vol. 27, no.22, pp.5084-5089, 2009.
[15] W. Kobayashi, M. Arai,T. Yamanaka, N. Fujiwara, T. Fujisawa, T. Tadokoro, K. Tsuzuki, Y. Kondo, and F. Kano, “Design and Fabrication of 10-/40-Gbit/s, Uncooled Electroabsorption Modulator Integrated DFB Laser with Butt-Joint Structure,” J. Lightwave Technology, vol. 99, pp. 1-8, 2009.
[16] E. J. Skogen, J. S. Barton, S. P. Denbaars and L. A. Coldren, ”Tunable Sampled-Grating DBR Lasers Using Quantum-Well Intermixing,” IEEE Photonics Technology Letter, vol. 14, no. 9, pp. 1-3, 2002.
[17] 杜長耕,「雙量子井結構之光積體化元件設計與製作」,碩士論文,國立台灣科技大學,民國98年。
[18] 林晏瑞,「多模干涉式積體光學元件之研究」,博士論文,國立台灣科技大學,民國92年。
[19] B. Soldano and C. M. Pennings,”Optical Multi-Mode Interference Devices based on Self-Imaging: Principles and Applications,” J. Lightwave Technology, vol. 13, no. 4, pp. 615-627, 1995.
[20] O. Bryngdahi, “Image Formation Using Self-Imaging Techniques,” J. The Optical of America, vol. 63, no.4, pp.416-419, 1973.
[21] 鐘隆維,「平面光路與光子晶體整合技術之研究」,博士論文,國立台灣科技大學,民國95年。
[22] H. Nishihara, M. Haruna, and T. Suhara, “Optical Integrated Circuits,” McGraw-Hill, 1985.
[23] T. Tamir, H. Kogelnik, J.M. Hammer, F. Zernike, and E. Garmire, “Integrated Optics,” Springer-Verlag, pp. 45-79, 1975.
[24] 郭盛輝,「應用於高速光開關之半導體光放大器」,碩士論文,國立台灣科技大學,民國93年。
[25] J. Minch, S. H. Park, T. Keating, and S. L. Chuang, "Theory and Experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs Long-Wavelength Strained Quantum-Well Lasers," J. Quantum Electronics, vol. 35, pp. 771-782, 1999.
[26] Gini, E and Melchior, H, “The Refractive Index of InP and Its Temperature Dependence in the Wavelength Range from 1.2 μm to 1.6 μm,” International Conference on Indium Phosphide and Related Materials, pp. 594-597, 1996.
[27] 陳家銘,「設計與製作應用於光閘開關之增益箝制半導體光放大器」,碩士論文,國立台灣科技大學,民國94年。
[28] M. Steinert, J. Acker, S. Oswald, and K. Wetzig, “Study on the Mechanism of Silicon Etching in HNO3-Rich HF/HNO3 Mixtures,” J. Physical Chemistry, vol. 111, no. 5, pp. 2133-2140, 2007.
[29] R. Prakasaun, S. Fox, B. P. Gopalan, S. Kareenahalli, P. J. S. Heim, and M. Dagenais, “Practical Approach to Design and Fabrication of Antireflection Coatings for Semiconductor Optical Amplifiers,” J. Photonics Technology Letter, vol. 8, no. 4, pp. 509-511, 1996.
[30] M. Kobayashi and H. Terui, “Refractive Index and Attenuation Characteristics of SiO2-Ta205 Optical Waveguide Film,” Applied Optics, vol. 22, no.19, pp. 3121-3127, 1983.

QR CODE