簡易檢索 / 詳目顯示

研究生: 謝侑城
Yu-Cheng Hsieh
論文名稱: 非金屬材質視覺外貌量測及擬真渲染研究
Study on Visual Appearance Measurement and Realistic Rendering for Non-metallic Materials
指導教授: 林宗翰
Tzunghan Lin
口試委員: 歐立成
Li-Chen Ou
孫沛立
Pei-Li Sun
陳怡永
Yi-Yung Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 106
中文關鍵詞: 材質視覺外貌基於物理的渲染空間變化雙向反射分布函數微平面模型
外文關鍵詞: Visual appearance, Physically Based Rendering, Spatially Varying Bidirectional Reflectance Distribution Function, Cook-Torrance Model.
相關次數: 點閱:131下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

如何準確的描述一個物體材質帶給人的視覺感受,一直都是許多行業致力於解決的問
題,為了解決此問題,國際照明委員會定義視覺外貌(Visual appearance)名詞,來描述
每一材質所擁有的四種屬性,分別為顏色、光澤度、透明度及紋理,藉由對此四種屬
性進行定量的分析來達到描述物體材質的目的;而目前傳遞視覺感受方面,渲染為最
直接呈現的方法。因此本研究將視覺外貌中定義的屬性與目前主流的渲染流程 PBR
(Physically-Based Rendering) 建立連結關係,而目前 PBR 渲染流程中主流之一的
Metallic/Roughness 渲染流程定義了對材質進行渲染所需的基本 4 種屬性貼圖,分別
為基本色貼圖、表面法向量貼圖、粗糙度貼圖及金屬度貼圖。藉由將視覺外貌的數值
代入 PBR 中定義的不同屬性貼圖中,來對物體材質做擬真渲染。本研究使用一個多
角度陣列式 LED 取像裝置進行實驗,實驗一「材質外貌擬真渲染實驗」量測了兩種
不同種類的材質(紡織品及裝潢壁紙)共計 20 個樣品,並計算其的各屬性貼圖後進行
渲染,最後透過人因實驗結果分析量測並計算後的各屬性貼圖的可信度;實驗二「取
樣減量之材質外貌擬真渲染實驗」對實驗一結果中評價分數最高的四個樣本嘗試使用
33 盞、30 盞、18 盞、15 盞、9 盞、3 盞光源來計算其粗糙度貼圖,並和使用全部光
源計算出的結果進行互相比較,結果顯示對高粗糙度的樣本而言,光源數量減至 3 盞
時皆無明顯差異,意即 3 盞光源配置即可產生可接受的 Roughness Map;對於低粗糙
度的樣本而言,光源數量減至 9 盞時會有明顯差異,意即 15 盞光源的配置即足夠產
生可接受的 Roughness Map。


How to accurately describe the visual experience of materials has always been an issue that researchers are trying to persue. In order to solve this problem, CIE (Commission Internationale de’Eclairage) gave a clear definition for visual appearance in 2008. Visual appearance consists of the properties of color, texture, gloss, and transparency that are evaluated by quantitative analysis. According to these analysis, the rendering process of PBR (Physically Based Rendering) is introduced in this research. Those basic quantity maps, called base color, normal, roughness and metallic maps, are used in Metallic/Roughness mainstream workflows of PBR. In this research, the data with different volumetric SVBRDF (Spatially Varying Bidirectional Reflectance Distribution Function) was captured by a self-developed SVBRDF measurement system. The purpose of Experiment 1 is verifying the reality of PBR texture of our device by psychophysical experiments. There are up to 20 samples, including textiles and wall-papers, that are verified. The result of Experiment 1 is considered as the base of Experiment 2. In Experiment 2, we chose the four qualified samples to evaluate and attend to decrease the number of LED light bulbs in our system, which is important cues for roughness map estimation in SVBRDF measurement. Totally, six types of arrangement, including these cases of 33, 30, 18, 15, 9, and 3 LED light bulbs, are evaluated. The roughness maps under different number of lights were tested based on Experiment 1 by psychophysical experiment, as well. The results of Experiment 2 show that in case of 3 LED light bulbs is acceptable for the material with higher roughness. And, in case of 9 LED light bulbs is not enough for the material of lower roughness. By contrast, in case of 15 LED light bulb is just acceptable in this situation.

目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第1章 緒論 1 1.1 研究背景及動機 1 1.2 研究目的 3 1.3 論文架構 4 第2章 文獻回顧 5 2.1 Physically Based Rendering相關理論 5 2.1.1 Rendering Equation 5 2.1.2 BRDF模型種類 7 2.1.3 Cook-Torrance model 11 2.1.4 Metallic/Roughness workflows 15 2.2 PBR Texture 相關文獻 16 2.2.1 BaseColor Map相關文獻 16 2.2.2 Normal Map相關文獻 17 2.2.3 Roughness Map相關文獻 18 2.2.4 Metallic Map 相關文獻 19 第3章 實驗方法 22 3.1 PBR Texture取像裝置 22 3.1.1 光源配置 22 3.1.2 相機設備 24 3.1.3 偏光取像設計 24 3.2 實驗流程概述 25 3.3 PBR Texture-BaseColor Map & Metallic Map 27 3.3.1 光源均勻化校正 29 3.3.2 灰階平衡校正 30 3.3.3 色彩校正 31 3.4 PBR Texture-Normal map 33 3.5 PBR Texture-Roughness map 36 3.5.1 光源亮度校正 37 3.5.2 影像中鏡反射與漫反射分離 38 3.5.3 Roughness Map 計算 39 3.6 材質外貌擬真渲染實驗 41 3.6.1 實驗樣本 42 3.6.2 實驗環境設計 47 3.6.3 實驗問卷設計 49 3.7 取樣減量之材質外貌擬真渲染實驗 50 第4章 實驗結果 53 4.1 PBR Texture 計算結果 53 4.1.1 BaseColor Map計算結果 53 4.1.2 Normal Map 計算結果 54 4.1.3 Roughness Map計算結果 56 4.2 實驗一結果 57 4.2.1 紡織品類樣本實驗結果 61 4.2.2 裝潢壁紙類樣本實驗結果 62 4.3 實驗二結果 64 4.3.1 紡織品類樣本實驗結果 66 4.3.2 裝潢壁紙類樣本實驗結果 71 第5章 結論及未來研究方向 77 參考文獻 78 附錄 84

[1] CIE175:2006, “A framework for the measurement of visual appearance.”
[2] C. Eugène, “Measurement of ‘total visual appearance’: a CIE challenge of soft metrology,” Symposium on Man, Science & Measurement, pp. 61–65, 2008.
[3] F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Applied Optics, vol. 5, no. 5, pp. 767–775, 1966.
[4] C. Wylie, G. Romney, D. Evans, and A. Erdahl, “Half-tone perspective drawings by computer,” Joint Computer Conference, no. Figure 2, pp. 49–58, 1967.
[5] T. Newell, M. E. Newell, R. G. Newell and T. L. Sancha, “A solution t o the hidden surface problem,” Association for Computing Machinery, pp. 443–450, 1972.
[6] W.J. Bouknight, “An improved procedure for generation of half-tone computer graphics representation,” vol. 74, pp. 89–138, 1969.
[7] A. Appel, “Some techniques for shading machine renderings of solids,” IBM Research Center Yorktown Heights, N. Y. , 1968.
[8] D. P. Greenberg, “A framework for realistic image synthesis,” Communications of the ACM, vol. 42, no. 8, pp. 44–53, 1999.
[9] A. Martinez and B. Snow, “Physically-based shading models in film and game production,” SIGGRAPH 2010 Course Notes, pp. 1–19, 2010.
[10] B. Burley, “Physically-based shading at disney,” the acm special interest group on computer graphics, pp. 1–26, 2012.
[11] C. Hery, R. Villemin, and P. Studios, “Physically based lighting at Pixar,” Phys. Based Shading Theory Pract. The ACM Special Interest Group on Computer Graphics Courses, pp. 1–23, 2013.

[12] A. Pranckevičius, “Physically based shading in Unity,” Game Developers Conference, 2014.
[13] B. Karis, “Real shading in Unreal Engine 4,” Acm Siggraph, pp. 1–21, 2013.
[14] C. deRousiers and S. Lagarde, “Moving Frostbite to physically based rendering,” Siggraph 2014 Courses, 2014.
[15] Allegorithmic, “The PBR guide by allegorithmic - part 2,” access on Jul. 7, 2019. Available: https://academy.substance3d.com/courses/the-pbr-guide-part-2.
[16] 劉宇倫,「基於稀疏 SVBRDF 之非金屬材質視覺外貌擷取研究」,國立台灣科技大學博士論文,2018。
[17] J. T. Kajiya, “The render equation,” Association for Computing Machinery, vol. 20, no. 4, pp. 143–150, 1986.
[18] R. Montes and C. Ureña, “An overview of BRDF models,” University of Granada, pp. 1–26, 2012.
[19] G. Kirchhoff, “On the relation between the radiating and absorbing powers of different bodies for light and heat,” p. 287.1860
[20] M. Oren and S. K. Nayar, “Generalization of Lambert’s reflectance model,” SIGGRAPH '94 Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pp. 239–246, 1994.
[21] B. T. Phong, “Illumination for computer generated pictures,” Communications of the ACM, vol. 18, no. 6, pp. 311–317, 1975.
[22] J. F. Blinn, “Models of light reflection for computer synthesized pictures,” ACM SIGGRAPH Computer Graphics, vol. 11, no. 2, pp. 192–198, 1977.
[23] W. Matusik and M. Brand, “A data-driven reflectance model,” Siggraph 2003, 2003.
[24] MERL, MERL BRDF Database, access on Jul. 7, 2019. Available: https://www.merl.com/brdf/.
[25] A. Ngan, F. Durand, W. Matusik, Experimental Analysis of BRDF Models, access on Jul. 7, 2019. Available: http://people.csail.mit.edu/addy/research/brdf/
[26] CAVE, CAVE TVBRDF Database, access on Jul. 7, 2019. Available: http://www1.cs.columbia.edu/CAVE/databases/tvbrdf/download.php.
[27] R. L. Cook and K. E. Torrance, “A Reflectance model for computer graphics,” The ACM Special Interest Group on Computer Graphics, vol. 1, no. 1, pp. 7–24, 1982.
[28] G. J. Ward, “Measuring and modeling anisotropic reflection,” ACM SIGGRAPH Computer Graphics, vol. 26, no. 2, pp. 265–272, 1992.
[29] P. Beckman, A. Spizzichino, The Scattering of Electromagnetic Waves From Rough
Surfaces. Artech House, Norwood, 1987.
[30] T. S. Trowbridge and K. P. Reitz, “Average irregularity representation of a rough surface for ray reflection,” The Optical Society Of America, vol. 65, no. 5, 1975.
[31] B. Walter, S. Marschner, H. Li, and K. Torrance, “Microfacet models for refraction through rough surfaces,” Proceedings of the 18th Eurographics Conference on Rendering Techniques, no. 1992, pp. 195–206, 2007.
[32] Marmoset Toolbag, Pbr Texture Conversion, access on Jul. 7, 2019. Available:
https://www.marmoset.co/posts/pbr-texture-conversion/
[33] C. Schlick, “An inexpensive BRDF model for physically-based rendering,” Computer
Graphics Forum, vol. 13, no. 3, pp. 233–246, Aug.1994.
[34] Y. Gotanda, “Practical physically based shading in film and game production: beyond a simple physically based blinn-phong model in real-time,” SIGGRAPH 2012, Nov.2012.
[35] ALLEGORITHMIC, “The PBR guide by allegorithmic - part 1,” access on Jul. 7, 2019. Available: https://academy.substance3d.com/courses/the-pbr-guide-part-1.
[36] B. G. Smith, “Geometrical Shadowing,” IEEE Transactions on Antennas and Propagation, vol. 15, no. 5, pp. 668–671, 1967.
[37] L. Neumann, A. Neumannn, and L. Szirmay-Kalos, “Compact metallic reflectance models,” Computer Graphics Forum, vol. 18, no. 3, pp. 161–172, 1999.
[38] C. Kelemen and L. Szirmay-Kalos, “A microfacet based coupled specular-matte brdf model with importance sampling,” Eurographics Conference, pp. 25–34, 2001.
[39] L. B. Wolff, “Using polarization to separate reflection components,” IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp. 363–369, 1989.
[40] S. Umeyama and G. Godin, “Separation of diffuse and specular components of surface reflection by use of polarization and statistical analysis of images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 5, pp. 639–647, 2004.
[41] J. Riviere, I. Reshetouski, L. Filipi, and A. Ghosh, “Polarization imaging reflectometry in the wild,” ACM Transactions on Graphics, vol. 36, no. 6, pp. 1–14, 2017.
[42] R.OSullivan et al., “Use of crossed polarizers to enhance images of the eyelids,” Cornea, vol. 36, no. 5, pp. 631–635, 2017.
[43] CIE15:2004, “Colorimetry.”
[44] 魏碩廷、陳鴻興、徐明景、李文淵、謝翠如、吳瑞卿和孫沛立 著,「色彩新論:
從心理設計到科學應用」,中華色彩學會,五南圖書,2018。
[45] M.Levoy, “Fitting smooth surfaces to dense polygon meshes venkat krishnamurthy,” SIGGRAPH '96 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 1996.
[46] R. J. Woodham, “Photometric method for determining surface orientation from multiple images,” Optical Engineering, vol. 19, no. 1, pp. 139–144, 1980.
[47] A. Tankus and N. Kiryati, “Photometric stereo under perspective projection 3 . background : the image irradiance,” IEEE International Conference on Computer Vision, vol. I, pp. 611–616, 2005.
[48] T. Papadhimitri and P. Favaro, “A new perspective on uncalibrated photometric stereo,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 1474–1481, 2013.
[49] R.Ramamoorthi, “An efficient representation for irradiance environment maps,” The ACM Special Interest Group on Computer Graphics, pp. 497–500, 2001.
[50] T. Okabe, I. Sato, and Y. Sato, “Attached shadow coding: Estimating surface normals from shadows under unknown reflectance and lighting conditions,” IEEE International Conference on Computer Vision, pp. 1693–1700, 2009.
[51] J. Riviere, P. Peers, and A. Ghosh, “Mobile surface reflectometry,” Computer Graphics Forum, vol. 35, no. 1, pp. 191–202, 2016.
[52] M. Aittala, T. Weyrich, and J. Lehtinen, “Two-shot SVBRDF capture for stationary materials,” ACM Transactions on Graphics, vol. 34, no. 10, pp. 110–113, 2015.
[53] Klein et al, “Photo-realistic rendering of metallic car paint from image-based measurements,” EUROGRAPHICS 2008, vol. 27, no. 2, pp. 527–536, 2008.
[54] H. Chen and L. B. Wolff, “Polarization phase-based method for material classification and object recognition in computer vision,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 28, pp. 128–135, 1996.
[55] L. B. Wolff, “Polarization-based material classification from specular reflection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 11, pp. 1059–1071, 1990.
[56] Prolight Opto, ProLight PM2B-3LxE-SD 3W Power LED Technical Datasheet, 2010.
[57] 陳尹清,「高品質法向量貼圖擷取之裝置開發」,國立台灣科技大學碩士論文,2017.
[58] ITU-R BT.500-13, “Methodology for the subjective assessment of the quality of
television pictures,” , International Telecommunication Union, 2012.

QR CODE