簡易檢索 / 詳目顯示

研究生: 劉宇倫
Yu-Lun Liu
論文名稱: 基於稀疏SVBRDF之非金屬材質視覺外貌擷取研究
Study on Visual Appearance Acquisition of Non-metallic Material Based on Sparse SVBRDF
指導教授: 林宗翰
Tzung-Han Lin
口試委員: 林宗翰
Tzung-Han Lin
孫沛立
Pei-Li Sun
李宗憲
Tsung-Xian Lee
李士元
Shyh-Yuan Lee
徐明景
Ming-Ching Shyu
林文國
Wen-Kuo Lin
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 96
中文關鍵詞: 材質視覺外貌物理渲染反射率分布函數
外文關鍵詞: Visual Appearance, Physically-based rendering, SVBRDF
相關次數: 點閱:238下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如何精準的描述材質所帶給人的視覺感受,一直以來都是許多研究人員致力於解決的問題,在工業設計及產品品質日益受到重視的今天,CMF(Color Material Finish)領域更是對於如何精準的掌握材質特性有著極大的需求。為了解決此問題,國際照明委員會透過定義材質視覺外貌(Visual appearance)此一名詞,來描述每一材質所擁有的四種屬性,分別為色彩、紋理、光澤度及透光度,藉由對此四種屬性進行定量的分析來達到材質描述的目的。本論文期望藉由建置一個SVBRDF(Spatially Varying Bidirectional Reflectance Distribution Function) 的量測系統,透過一系列控制下的多角度光源與相機之間對材料的取像資料,來還原非金屬材質的視覺外貌屬性。
    為了達到視覺化量化結果的目的,本研究希望透過擬真渲染的方式,來達到材質描述的目標。因此本研究將材質視覺外貌中所定義的屬性與圖學渲染中目前主流的渲染流程PBR (Physically-Based Rendering)建立起之間的關係。對於目前主流之一的Metallic Roughness 渲染流程,其定義了對材質所需的基本4種屬性貼圖,分別為基本色貼圖、表面法向量貼圖、粗糙度貼圖及金屬度貼圖。藉由將視覺外貌的定量分析參數化至PBR中所定義的不同屬性的紋理貼圖中,來完成最終對於材質的擬真渲染。本研究量測了3種不同種類的材質共計10個樣品,並抽取其所擁有的各屬性貼圖,最後透過渲染的方式來呈現對不同屬性量化的成果。


    How to accurately describe the visual experience brought by materials has always been an issue that many researchers are trying to solve. Nowadays, to increase the value industrial product, the field of CMF (Color Material Finish) needs more accurate mastery of material characteristics. In order to solve this problem, CIE (Commission Internationale de’Eclairage) defined visual appearance. Visual appearance consists of the properties of color, texture, gloss, and transparency that are evaluated by the approach of the quantitative analysis. Based on quantitative analysis, four attributes to achieve the purpose of material description. In this thesis, we proposed a practical solution to restore the visual appearance of non-metallic materials by constructing a SVBRDF (Spatially Varying Bidirectional Reflectance Distribution Function) measurement system, with a series of controlled multi-angle light sources and camera image data.
    In order to get the quantitative results, this study describes the target of material by photo realistic rendering method. Therefore, this study establishes the relationship among those attributes defined in the visual appearance of materials, and utilizes the current mainstream rendering process, which is the metallic roughness workflow of PBR (physically based Rendering), for visual reproduction. In the workflow, the four basic attribute maps, called color, normal, roughness and metallic maps, are required to represent the material. The realistic rendering of specific materials is carried out by quantifying the attributes of the texture map. This study tested three kinds of material commas of 10 samples. Finally, the graphical reproductions are evaluated by verifying the rendering of different attributes.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第1章 緒論 1 1.1 研究動機 1 1.2 研究背景 4 1.3 研究目的 7 1.4 論文架構 8 第2章 文獻回顧 10 2.1 相關理論 10 2.1.1 Rendering Equation 10 2.1.2 反射模型 (Reflection Model) 12 2.1.3 Cook-Torrance model 16 2.1.4 Metallic/Roughness workflows 19 2.2 反射模型擷取系統 20 2.2.1 多光源多視角量測系統 20 2.2.2 多光源單視角量測系統 23 2.3 PBR Texture 量測相關文獻 25 2.3.1 Diffuse擷取相關文獻 26 2.3.2 Normal map 擷取相關文獻 26 2.3.3 Metallic map 擷取相關文獻 27 第3章 研究方法 29 3.1 PBR Texture擷取系統設計 29 3.1.1 光源模組 31 3.1.2 相機模組 33 3.1.3 偏光取像設計 35 3.2 Diffuse map 抽取方式 (image pipeline) 37 3.2.1 光源均勻化校正 38 3.2.2 灰階平衡修正 39 3.2.3 Color Calibration 40 3.3 Normal map Estimation 42 3.3.1 立體光度測量法 43 3.4 Roughness map Estimation 45 3.4.1 Radiance 校正 46 3.4.2 基於偏光取像之Diffuse與Specular分離 47 3.4.3 Pre-Pixel Roughness 估計方法 49 3.4.4 多視角影像對齊 52 第4章 實驗結果 53 4.1 測試樣本 53 4.2 實際系統機構建置 56 4.3 Diffuse Map抽取結果 60 4.3.1 色彩校正結果分析 60 4.3.2 樣品Diffuse map抽取結果 64 4.4 Normal Map 抽取結果 66 4.4.1 基於重建標準圓球的Normal Map精確度評估 66 4.4.2 樣品Normal Map重建結果 68 4.5 Roughness Map抽取結果 70 4.5.1 Per-Pixel BRDF 重建結果分析 70 4.5.2 Roughness Fitting 流程 71 第5章 渲染模擬實驗 74 5.1 各樣品渲染效果 75 5.2 小結 86 第6章 結論 87 參考文獻 88

    [1]CIE, Commission Internationale de’Eclairage, http://www.cie.co.at/
    [2]C. Eugène, “Measurement of ‘total visual appearance’: a CIE challenge of soft metrology,” Symposium on Man, Science & Measurement, pp. 61–65, 2008.
    [3]K. J. Dana, “Capturing computational appearance: More than meets the eye,” IEEE Signal Processing Magazine, vol. 33, no. 5, pp. 70–80, 2016.
    [4]G. C. Guarnera, A. Ghosh, I. Hall, M. Glencross, and D. Guarnera, “Material capture and representation with applications in virtual reality,” The ACM Special Interest Group on Computer Graphics Courses, pp. 1–72, 2017.
    [5]O. Pedgley, “Invigorating industrial design materials and manufacturing education,” Journal of the Faculty of Architecture, Middle East Technical University, vol. 27, no. 2, pp. 339–360, 2010.
    [6]李駿平,建立材料選擇工具之前導研究,國立台灣科技大學碩士論文,2014。
    [7]M. Giesel and Q. Zaidi, “Visual perception of material affordances,” Journal of Visualized Experiments, vol. 11, no. 11, pp. 356–356, Sep.2011.
    [8]H. Isoaho, “Color, material and finish design,” Kymenlaakso University of Applied Sciences, Finland, 2016.
    [9]H. Zuo, M. Jones, T. Hope, and R. Jones, “Sensory perception of material texture in consumer products,” The Design Journal, vol. 19, no. 3, pp. 405–427, 2016.
    [10]B. Burley and WaltDisneyAnimationStudios, “Physically-based shading at Disney,” The ACM Special Interest Group on Computer Graphics, pp. 1–26, 2012.
    [11]C. Hery, R. Villemin, and P. Studios, “Physically based lighting at Pixar,” Phys. Based Shading Theory Pract. The ACM Special Interest Group on Computer Graphics Courses, pp. 1–23, 2013.
    [12]A. Pranckevičius, “Physically based shading in Unity,” Game Developers Conference, 2014.
    [13]R. OSullivan, L. M. Tom, V. Y. Bunya, W. C. Nyberg, M. Massaro-Giordano, E. Daniel, E. Smith, D. H. Brainard, J. Gee, M. G. Maguire, and R. A. Stone, “Use of crossed polarizers to enhance images of the eyelids,” Cornea, vol. 36, no. 5, pp. 631–635, 2017.
    [14]L. Fang, T. Jiandong, T. Yandong, and W. Yan, “An image highlights removal method with polarization principle,” Proceedings of International Conference on Machinery, Materials and Information Technology Applications, pp. 402-407, 2015.
    [15]ALLEGORITHMIC, The PBR guide by allegorithmic - part 2, access on Jul. 7, 2018. Available: https://academy.allegorithmic.com/courses/05171e19aa8dc19421385fd9bb9e016e
    [16]Marmoset Toolbag, Pbr Texture Conversion, access on Jul. 7, 2018. Available: https://www.marmoset.co/posts/pbr-texture-conversion/
    [17]POLIIGON, access on Jul. 7, 2018. Available: https://www.poliigon.com/.
    [18]Free PBR, access on Jul. 7, 2018. Available: https://freepbr.com/
    [19]J. Riviere, P. Peers, and A. Ghosh, “Mobile surface reflectometry,” Computer Graphics Forum, vol. 35, no. 1, pp. 191–202, 2016.
    [20]C. Schwartz, R. Sarlette, M. Weinmann, M. Rump, and R. Klein, “Design and implementation of practical bidirectional texture function measurement devices focusing on the developments at the University of Bonn,” Sensors, vol. 14, no. 5, pp. 7753–7819, 2014.
    [21]R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” The ACM Special Interest Group on Computer Graphics, vol. 15, no. 3, pp. 307–316, 1981.
    [22]M. Pharr and G. Humphreys, Physically based rendering: From theory to implementation. Morgan Kaufmann, 2017.
    [23]G. Müller, J. Meseth, M. Sattler, R. Sarlette, and R. Klein, “Acquisition, synthesis, and rendering of bidirectional texture functions,” Computer Graphics Forum, vol. 24, no. 1, pp. 83–109, 2005.
    [24]M. Weinmann, D. denBrok, S. Krumpen, and R. Klein, “Appearance capture and modeling,” The ACM Special Interest Group on Computer Graphics in Asia Courses, p. 4:1-4:1, 2015.
    [25]J. F. Blinn, “Models of light reflection for computer synthesized pictures,” The ACM Special Interest Group on Computer Graphics, vol. 11, no. 2, pp. 192–198, 1977.
    [26]P. Beckman, A. Spizzichino, The Scattering of Electromagnetic Waves From Rough Surfaces. Artech House, Norwood, 1987.
    [27]B. Walter, S. Marschner, H. Li, and K. Torrance, “Microfacet models for refraction through rough surfaces,” Proceedings of Eurographics conference on Rendering Techniques, pp. 195–206, 2007.
    [28]C. Schlick, “An inexpensive BRDF model for physically-based rendering,” Computer Graphics Forum, vol. 13, no. 3, pp. 233–246, Aug.1994.
    [29]Akenine-Moller, Tomas, E. Haines, and N. Hoffman. Real-time rendering. AK Peters/CRC Press, 2008.
    [30]L. Neumann, A. Neumannn, and L. Szirmay-Kalos, “Compact metallic reflectance models,” Computer Graphics Forum, vol. 18, no. 3, pp. 161–172, 1999.
    [31]C. Kelemen and L. Szirmay-Kalos, “A microfacet based coupled specular-matte BRDF model with importance sampling,” Proceedings of Eurographics conference on Rendering Techniques, pp. 25–34, 2001.
    [32]B. Smith, “Geometrical shadowing of a random rough surface,” IEEE Transactions on Antennas and Propagation, vol. 15, no. 5, pp. 668–671, Sep.1967.

    [33]F. S. Choong, “A gonioreflectometer for measuring the bidirectional reflectance of material for use in illumination computation,” Doctoral dissertation, Cornell University, no. August, p. 145, 1997.
    [34]D. R. White, P. Saunders, S. J. Bonsey, J. van deVen, and H. Edgar, “Reflectometer for measuring the bidirectional reflectance of rough surfaces,” Applied Optics, vol. 37, no. 16, pp. 3450–3454, 1998.
    [35]H. Li, “Automated three-axis gonioreflectometer for computer graphics applications,” Optical Engineering, vol. 45, no. 4, p. 043605, 2006.
    [36]S. R. Marschner, S. H. Westin, E. P. Lafortune, and K. E. Torrance, “Image-based bidirectional reflectance distribution function measurement.,” Applied Optics, vol. 39, no. 16, pp. 2592–2600, 2000.
    [37]D. B. Kim, K. Y. Kim, K. S. Park, M. K. Seo, and K. H. Lee, “A fast and accurate image-based measuring system for isotropic reflection materials,” International Society for Optics and Photonics, vol. 7065, p. 70650I–1–12, 2008.
    [38]K. S. Park and K. H. Lee, “High-dynamic-range camera-based bidirectional reflectance distribution function measurement,” Optical Engineering, vol. 48, no. September 2009, pp. 1–11, 2017.
    [39]B. E. Moshe, et al., "An LED-only BRDF measurement device," IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008.
    [40]G. Müller, et al., “Rapid synchronous acquisition of geometry and appearance of cultural heritage artefacts,” Vast, pp. 13–20, 2005.
    [41]M. Weinmann, et al., “A multi-camera, multi-projector super-resolution framework for structured light,” International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, pp. 397–404, 2011.
    [42]C. Schwartz, R. Sarlette, M. Weinmann, M. Rump, and R. Klein, “Design and implementation of practical bidirectional texture function measurement devices focusing on the developments at the University of Bonn,” Sensors, vol. 14, no. 5, pp. 7753–7819, 2014.
    [43]M. Rump, G. Müller, R. Sarlette, D. Koch, and R. Klein, “Photo-realistic rendering of metallic car paint from image-based measurements,” Computer Graphics Forum, vol. 27, no. 2, pp. 527–536, 2008.
    [44]J. Riviere, P. Peers, and A. Ghosh, “Mobile surface reflectometry,” Computer Graphics Forum, vol. 35, no. 1, pp. 191–202, 2016.
    [45]P. Debevec, “The light stages and their applications to photoreal digital actors,” The ACM Special Interest Group on Computer Graphics in Asia, pp. 1998–2001, 2012.
    [46]A. Ghosh, T. Hawkins, P. Peers, S. Frederiksen, and P. Debevec, “Practical modeling and acquisition of layered facial reflectance,” ACM Transactions on Graphics, vol. 27, no. 5, p. 1, 2008.
    [47]W. Ma, T. Hawkins, and P. Peers, “Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination,” Proceedings of Eurographics conference on Rendering Techniques, pp. 183–194, 2007.
    [48]A. Ghosh, G. Fyffe, B. Tunwattanapong, J. Busch, X. Yu, and P. Debevec, “Multiview face capture using polarized spherical gradient illumination,” The ACM Special Interest Group on Computer Graphics in Asia, vol. 30, no. 6, p. 1, 2011.
    [49]O. Alexander, G. Fyffe, J. Busch, X. Yu, R. Ichikari, A. Jones, P. Debevec, J. Jimenez, E. Danvoye, B. Antionazzi, M. Eheler, Z. Kysela, and J. Pahlen, “Digital Ira: creating a real-time photoreal digital actor,” The ACM Special Interest Group on Computer Graphics, p. 4, 2013.
    [50]S. Zhao, W. Jakob, S. Marschner, and K. Bala, “Building volumetric appearance models of fabric using micro CT imaging,” ACM Transactions on Graphics, vol. 30, no. 4, p. 1, 2011.
    [51]G. Nam, J. H. Lee, H. Wu, D. Gutierrez, and M. H. Kim, “Simultaneous acquisition of microscale reflectance and normals,” ACM Transactions on Graphics, vol. 35, no. 6, pp. 1–11, 2016.
    [52]M. Aittala, T. Weyrich, and J. Lehtinen, “Two-shot SVBRDF capture for stationary materials,” ACM Transactions on Graphics, vol. 34, no. 4, p. 110:1--13, 2015.
    [53]L. Miyashita, Y. Watanabe, and M. Ishikawa, “Rapid SVBRDF measurement by algebraic solution based on adaptive illumination,” International Conference on 3D Vision, no. Figure 1, pp. 232–239, 2015.
    [54]L. B. Wolff, “Using polarization to separate reflection components,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 363–369, 1989.
    [55]S. Umeyama and G. Godin, “Separation of diffuse and specular components of surface reflection by use of polarization and statistical analysis of images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 5, pp. 639–647, 2004.
    [56]L. Fang, T. Jiandong, T. Yandong, and W. Yan, “An image highlights removal method with polarization principle,” International Conference on Machinery, Materials And Information Technology Applications, pp. 402–407, 2015.
    [57]J. Riviere, I. Reshetouski, L. Filipi, and A. Ghosh, “Polarization imaging reflectometry in the wild,” ACM Transactions on Graphics, vol. 36, no. 6, pp. 1–14, 2017.
    [58]R. OSullivan, L. M. Tom, V. Y. Bunya, W. C. Nyberg, M. Massaro-Giordano, E. Daniel, E. Smith, D. H. Brainard, J. Gee, M. G. Maguire, and R. A. Stone, “Use of crossed polarizers to enhance images of the eyelids,” Cornea, vol. 36, no. 5, pp. 631–635, 2017.
    [59]R. J. Woodham, “Photometric method for determining surface orientation from multiple images,” Optical Engineering, vol. 19, no. 1, pp. 139–144, 1980.
    [60]A. Tankus and N. Kiryati, “Photometric stereo under perspective projection,” IEEE International Conference on Computer Vision, vol. I, pp. 611–616, 2005.
    [61]T. Papadhimitri and P. Favaro, “A new perspective on uncalibrated photometric stereo,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 1474–1481, 2013.
    [62]T. Okabe, I. Sato, and Y. Sato, “Attached shadow coding: Estimating surface normals from shadows under unknown reflectance and lighting conditions,” IEEE International Conference on Computer Vision, no. ICCV, pp. 1693–1700, 2009.
    [63]R. Ramamoorthi and P. Hanrahan, “An efficient representation for irrandiance environment maps,” The ACM Special Interest Group on Computer Graphics, pp. 497–500, 2001.
    [64]R. Basri, D. Jacobs, and I. Kemelmacher, “Photometric stereo with general, unknown lighting,” International Journal of Computer Vision, vol. 72, no. 3, pp. 239–257, 2007.
    [65]C. P. Chen and C. S. Chen, “The 4-source photometric stereo under general unknown lighting,” European Conference on Computer Vision, pp. 72–83, 2006.
    [66]L. B. Wolff, “Polarization-based material classification from specular reflection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 11, pp. 1059–1071, 1990.
    [67]H. Chen and L. Wolff, “Polarization phase-based method for material classification and object recognition in computer vision,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 28, no. 1, pp. 128–135, 1996.
    [68]A. Ibrahim, “Spectral imaging method for material classification and inspection of printed circuit boards,” Optical Engineering, vol. 49, no. 5, p. 057201, 2010.
    [69]CIE Technical Report, “Method of measuring and specifying colour rendering properties of light sources,” no 13.3, 1995
    [70]Y. K. Cheng and K. W. E. Cheng, “General study for using LED to replace traditional lighting devices,” International conference on Power, Energy, Signal and Automation, pp. 173–177, 2006.
    [71]CIE Technical Report of TC1-62, “Colour rendering of white LED light sources,” CIE Commission Internationale de l’Eclairage, no. 177, 2007.
    [72]F. Hunter, S. Biver, and P. Fuqua, Light Science & Magic: An Introduction to Photographic Lighting. CRC Press, 2015.
    [73]D. J. Gozalo-Diaz, D. T. Lindsey, W. M. Johnston, and A. G. Wee, “Measurement of color for craniofacial structures using a 45/0-degree optical configuration,” Journal of Prosthetic Dentistry., vol. 97, no. 1, pp. 45–53, Jan.2007.
    [74]R. D. Myers, Colorchecker passport technical review. Robin Myers Imaging, 2010.
    [75]G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera colorimetric characterization nased on polynomial modeling,” vol. 2, no. Iso 17321, 2000.
    [76]陳尹清,高品質法向量貼圖擷取之裝置開發,國立台灣科技大學碩士論文,2017。
    [77]J. Dupuy, E. Heitz, J. C. Iehl, P. Poulin, and V. Ostromoukhov, “Extracting microfacet-based BRDF parameters from arbitrary materials with power iterations,” Computer Graphics Forum, vol. 34, no. 4, pp. 21–30, 2015.
    [78]Z. Zhou, G. Chen, Y. Dong, D. Wipf, Y. Yu, and J. Snyder, “Sparse-as-possible SVBRDF acquisition,” ACM Transactions on Graphics, vol. 189, no. November, pp. 1–12, 2016.
    [79]M. Aittala, T. Aila, and J. Lehtinen, “Reflectance modeling by neural texture synthesis,” ACM Transactions on Graphics, vol. 35, no. 4, pp. 1–13, 2016.
    [80]威肯雅飾 access on Jul. 7, 2018. Available:http://www.wecanyes.com.tw/
    [81]白馬磁磚 access on Jul. 7, 2018. Available:http://www.whitehorse.com.tw/
    [82]Hill Jr., F.S., Computer graphics: using OpenGL., Prentice-Hall, New Jersey
    [83]Keller, Alexander, et al., “Ray tracing is the future and ever will be...,” The ACM Special Interest Group on Computer Graphics Courses, pp. 9, 2013.
    [84]P. Debevec, “Image-based lighting,” IEEE Computer Graphics and Applications, vol. 22, no. 2, pp. 26–34, 2002.

    QR CODE