簡易檢索 / 詳目顯示

研究生: 吳昕恩
Hsin-En Wu
論文名稱: 具細胞球列印功能之生物3D列印系統之開發
Development of the 3D bioprinting system with cell spheroid printing function
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 白孟宜
Meng-Yi Bai
謝明佑
Ming-You Shie
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 130
中文關鍵詞: 細胞球體組織工程3D生物列印多材料生物列印
外文關鍵詞: Cell spheroid, Tissue engineering, 3D bioprinting, multi-material bioprinting
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞球具能產生更類似天然生物體內組織之微環境,相對包埋活細胞之水凝膠展現出更佳的生物特性,因此在組織工程、藥物篩檢等應用中具有非常大的潛力。然而市售3D生物列印機大多不具備細胞球列印能力,現有解決方案大多有機構複雜、易造成細胞損傷等問題。本研究目的為提出一新穎的吸取頭設計,不須複雜機構即可整合於現有生物列印機,且進一步降低對細胞球之形貌破壞。
    本研究設計之細胞球列印子系統,包含細胞球吸取裝置及供應裝置兩部分。吸取裝置包含可分散吸力之多孔吸取頭及排水設計;供應裝置由Arduino控制小型步進馬達使細胞球轉盤旋轉以連續供應細胞球。經吸取成功率測試,單孔吸取頭僅能在-6kPa下達到65%成功率,而多孔細胞球可在-4kPa下達成最高94%之成功率,同時多孔吸取頭經改良定位環後可再提高列印精度。使用本研究之細胞球吸取列印子系統整合於先前研究之生物列印機,成功分別將直徑500µm及900µm之細胞球列印於生物支架,透過多組吸取裝置也可於同一支架列印不同直徑細胞球,證實此系統用於異質細胞組織工程應用之潛力。


    Cell spheroids can generate microenvironments that are very similar to the in vivo tissues, and exhibit better biological characteristics than cell-laden hydrogels. Therefore, it has great potential in tissue engineering, drug screening, and other applications. However, most of the commercial 3D bioprinters do not have the ability to print cell spheroids, and most of the existing solutions have problems such as complex mechanisms and possible cell damage. The purpose of this research is to propose a novel printing module design, which can be integrated into the existing bioprinter without adding complicated mechanisms, and further reduce the damage to cell spheroids' morphology.
    The design of the spheroid printing sub-system in this study consists of two parts: a spheroid suction device and a supply device. The suction device includes a multihole suction head that can disperse stress and have drainage design; the supply device is controlled by an Arduino to control a small stepping motor to rotate the cell spheroid carrier to continuously supply cell spheroids. The test results show, the single-hole suction head can only achieve a 65% success rate at -6kPa of back pressure, while the multihole suction head can achieve a maximum success rate of 94% at -4kPa of back pressure. Meanwhile, higher printing accuracy is achieved by the improved locating ring design. Using the spheroid printing sub-system integrated with the bioprinter in previous research, the cell spheroid with diameters of 500 µm and 900 µm were successfully printed on PCL scaffold. With multiple sets of printing modules, different sizes of spheroids can be printed on the same scaffold. Proving the potential of this system applied to heterogeneous cell tissue engineering.

    摘要 Abstract 目錄 圖目錄 表目錄 第1章 緒論 1.1 研究背景 1.2 研究動機與目的 1.3 研究方法 1.4 論文架構 第2章 文獻探討 2.1 3D生物列印技術(3D Bioprinting) 2.2 3D生物列印技術應用於組織工程 2.3 水凝膠與細胞球差異 2.3.1 水凝膠生物支架 2.3.2 細胞球用於組織工程 2.4 擠製型3D生物列印技術現況 2.4.1 目前市面之擠製型3D生物列印機 2.4.2 其他細胞球生物列印技術 2.4.3 具細胞球列印功能之生物3D列印技術比較 2.5 本研究室研究回顧 第3章 細胞球列印子系統設計與製作 3.1 細胞球吸取裝置 3.1.1 多孔細胞球吸取頭之特徵設計 3.1.2 吸取頭孔洞設計 3.1.3 排水設計 3.2 細胞球供應裝置 3.3 下照式DLP 型光固化3D列印技術應用於多孔吸取頭製作 3.3.1 下照式DLP型光固化3D列印系統 3.3.2 動態光罩產生器 3.3.3 5µm精度鏡頭 3.4 細胞球吸取頭製作 第4章 細胞球列印子系統測試 4.1 細胞球吸取裝置排水設計 4.2 吸取氣壓與吸取成功率 4.2.1 細胞球吸取成功率測試方法 4.2.2 單孔吸取頭 4.2.3 無定位環設計之吸取頭 4.2.4 有定位環設計之吸取頭 4.2.5 吸取測試結果與討論 4.3 細胞球吸取前後形貌差異 4.3.1 吸取時外型變化 4.3.2 吸取後形貌影響 4.4 細胞列印子系統列印測試 4.4.1 列印精度測試方法 4.4.2 無定位環設計之吸取頭 4.4.3 有定位環設計之吸取頭 4.5 吸取裝置設計改良 4.5.1 定位環設計改良 4.5.2 改良後吸取頭列印測試 4.6 列印精度結果比較 4.7 細胞球列印子系統測試總結 第5章 系統整合與支架列印驗證 5.1 可換噴頭多材料3D生物列印設備整合 5.1.1 可換噴頭多材料生物列印機之模組改良 5.1.2 吸取裝置整合 5.1.3 細胞球供應裝置整合 5.1 細胞球列印於生物支架 5.2 細胞球吸取列印系統應用不同直徑細胞球 5.2.1 900µm細胞球列印於生物支架 5.2.2 不同直徑細胞球列印於生物支架驗證 第6章 結論與未來研究方向 6.1 結論 6.2 未來研究方向 參考文獻

    V. Mironov, T. Trusk, V. Kasyanov, S. Little, R. Swaja, R. Markwald (2019). "Biofabrication: a 21st century manufacturing paradigm." Biofabrication. 1(2): 022001.
    I. T. Ozbolat (2015). "Bioprinting scale-up tissue and organ construsts for transplantation." Trends in Biotechnology. 33(7): 395-400.
    I. T. Ozbolat, K. K. Moncal and H. Gudapati (2017). "Evaluation of bioprinter technologies." Additive Manufacturing 13:179-200.
    V. Mironov, N. Reis, B. Derby (2006). “Bioprinting: A Beginning.” Tissue engineering. 12(4): 631-634
    Z. Zhang, B. Wang, D. Hui, J. Qiu and S. Wang (2017). "3D bioprinting of soft materials-based regenerative vascular structures and tissues." Composites Part B: Engineering 123:279-291.
    R. Langer, J. P. Vacanti (1993). “Tissue engineering.” Science 260(5110): 920-926.
    D. W. Hutmacher, M. Sittinger, M. V. Risbud (2004). “Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems.” Trends in Biotechnology. 22(7): 354-362.
    K. F. Leong, C. M. Cheah, C. K. Chua (2003). “Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs.” Biomaterials. 24(13): 2363-2378
    E. Sachlos, N. Reis, C. Ainsley, B. Derby, J. T. Czernuszka (2003). “Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication.” Biomaterials. 24(8): 1487-1497.
    I. T. Ozbolat, M. Hospodiuk (2016). " Current advances and future perspectives in extrusion-based bioprinting." Biomaterials. 76: 321-343.
    I. T. Ozbolat (2016). “3D Bioprinting.” Academic Press.
    S. Buyuksungur, V. Hasirci, N. Hasirci (2021). “3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA.” Journal of Biomedical Materials Research Part A. 1-13
    F. Pampaloni, E. G. Reynaud and E. H. K. Stelzer (2007). “The third dimension bridges the gap between cell culture and live tissue.” Nature reviews. Molecular cell biology. 8(10):839-45
    H. K. Kleinman, D. Philip, M. P. Hoffman (2003). “Role of the extracellular matrix in morphogenesis.” Current Opinion in Biotechnology. 14(5): 526-532
    B. M. Baker, C. S. Chen (2012). “Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues.” Journal of Cell Science. 125(13): 3015-3024.
    I. T. Ozbolat (2015). “Scaffold-Based or Scaffold-Free Bioprinting: Competing or Complementing Approaches?” J. Nanotechnol. Eng. Med. 6(2): 024701.
    J. Malda, J. Visser, F. P. Melchels, T. Jüngst, W. E. Hennink, W. J. A. Dhert, J. Groll, D. W. Hutmacher (2013). “25th Anniversary Article: Engineering Hydrogels for Biofabrication.” Advanced Materials. 25(36): 5011-5028.
    T. M. Achilli, J. Meyer & J. R. Morgan (2012). “Advances in the formation, use and understanding of multi-cellular spheroids.” Expert Opinion on Biological Therapy. 12(10): 1347-1360.
    C. T. Kuo, J. Y. Wang, Y. F. Lin, A. M. Wo, B. P. C. Chen, H. Lee (2017). “Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array.” Scientific Reports. 7: 4363.
    C. K. Griffith, C. Miller, R. C. A. Sainson, J. W. Calvert, N. L. Jeon, C. C. W. Hughes, S. C. George (2005). “Diffusion limits of an in vitro thick prevascularized tissue.” Tissue Engineering. 11(1-2): 257-66
    C. R. Thoma, M. Zimmermann, I. Agarkova, J. M. Kelm, W. Krek (2014). “3D cell culture systems modeling tumor growth determinants in cancer target discovery.” Advanced Drug Delivery Reviews. 69-70: 29-41
    V. Mironov, R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, R. R. Markwald (2009). “Organ printing: Tissue spheroids as building blocks.” Biomaterials. 30(12): 2164-2174.
    N. Hong, G. H. Yang, J. Lee, G. Kim (2018) "3D bioprinting and its in vivo applications. " Journal of Biomedical Material Research PART B APPLIED BIOMATERIALS 106(1):444-459.
    EnvisionTEC, https://envisiontec.com/3d-printers/3d-bioplotter/
    GeSiM, https://gesim-bioinstruments-microfluidics.com/bioprinter/
    Organovo, https://organovo.com/technology-platform/
    L. M. Norona, D. G. Nguyen, D. A. Gerber, S. C. Presnell, E. L. LeCluyse (2016). “Editor’s Highlight: Modeling Compound-Induced Fibrogenesis In Vitro Using Three-Dimensional Bioprinted Human Liver Tissues.” Toxicological Sciences. 154(2): 354-367
    S. M. King, J. W. Higgings, C. R. Nino, T. R. Smith, E. H. Paffenroth, C. E. Fairbairn, A. Docuyanan, V. D. Shah, A. E. Chen, S. C. Presnell, D. G. Nguyen (2017). “3D Proximal Tubule Tissues Recapitulate Key Aspects of Renal Physiology to Enable Nephrotoxicity Testing.” Frontiers in Physiology. 8(123).
    L. R. Madden, T. V. Nguyen, S. Garcia-Mojica, V. Shah, A. V. Le, A. Peier, R. Visconti, E. M. Parker, S. C. Presnell, D. G. Nguyen, K. N. Retting (2018). “Bioprinted 3D Primary Human Intestinal Tissues Model Aspects of Native Physiology and ADME/Tox Functions.” iScience. 2: 156-167.
    Invetech, https://www.invetechgroup.com/case-studies/organovo-novogen-mmx-bioprinter/
    CELLINK, https://www.cellink.com/global/
    ALLEVI, https://www.allevi3d.com/
    Cyfuse, https://www.cyfusebio.com/en/product/3dprinter/device/
    N. I. Moldovan1, N. Hibino and K. Nakayama (2017) “Principles of the Kenzan Method for Robotic Cell Spheroid-Based 3D Bioprinting” Tissue Engineering. Part B, Reviews. 23(3): 237-244.
    M. Itoh, K. Nakayama, R. Noguchi, K. Kamohara, K. Furukawa, K. Uchihashi, S. Toda, J. Oyama, K. Node, S. Morita (2015). “Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae.” PLoS ONE. 10(9): e0136681.
    K. Arai, D. Murata, A. R. Verissimo, Y. Mukae, M. Itoh, A. Nakamura, S. Morita, K. Nakayama (2018). “Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer” PLoS ONE. 13(12): e0209162.
    I. N. Aguilar, L. J. Smith, D. J. Olivos III, T. M. G. Chu, M. A. Kacena, D. R. Wagner (2019). “Scaffold-free bioprinting of mesenchymal stem cells with the regenova printer: Optimization of printing parameters.” Bioprinting. 15: e00048.
    3D Bioprinting Solutions, https://bioprinting.ru/en/products-services/fabion/
    E. A. Bulanova, E. V. Koudan, J. Degosserie, C. Heymans, F. D. Pereira, V. A. Parfenov, Y. Sun, Q. Wang, S. A. Akhmedova, I. K. Sviridova, N. S. Sergeeva, G. A. Frank, Y. D. Khesuani, C. E. Pierreux and V. A. Mironov (2017). “Bioprinting of a functional vascularized mouse thyroid gland construct.” Biofabrication. 9: 034105.
    K. Jakab, C. Norotte, B. Damon, F. Marga, A. Neagu, C. L. Besch-Williford, A. Kachurin, K. H. Church, H. Park, V. Mironov, R. Markwald, G. Vunjak-Novakovic, and G. Forgacs (2008). “Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures.” Tissue Engineering: Part A. 14(3)
    N. V. Mekhileri, K. S. Lim, G. C. J. Brown, I. Mutreja, B. S. Schon, G. J. Hooper and T. B. F. Woodfield (2018). “Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered construct.” Biofabrication. 10: 024103
    B. Ayan, D. N. Heo, Z. Zhang, M. Dey, A. Povilianskas, C. Drapaca and I. T. Ozbolat (2020). “Aspiration-assisted bioprinting for precise positioning of biologics.” Science Advances. 6(10): eaaw5111
    楊上逸,2018, “可換噴頭多材料3D生物列印機台之開發” ,國立台灣科技大學機械工程研究所,碩士論文。
    陳心怡,2019, “可換噴頭多材料3D生物列印機台之模組改良”,國立台灣科技大學機械工程研究所,碩士論文。
    杜鳳琪,2006,“流體力學”,高立圖書有限公司
    Polysciences, https://www.polysciences.com/german/polycaprolactone-polymer

    無法下載圖示 全文公開日期 2024/09/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE