簡易檢索 / 詳目顯示

研究生: 李金龍
Chin-Lung Lee
論文名稱: 結合STL電腦圖檔的直接施力沈浸邊界法在流固耦合模擬應用研究
Application of direct-forcing immersed boundary method coupled with STL CAD files on fluid-solid interaction simulations
指導教授: 陳明志
Ming-Jyh Chern
口試委員: 王謹誠
Chin-Cheng Wang
曾修暘
Hsiu-Yang Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 81
中文關鍵詞: 直接施力沉浸邊界法流固耦合標準三角語言空腔圓柱體光線投射演算法
外文關鍵詞: Direct-forcing immersed boundary (DFIB),, Fluid-solid interaction (FSI), STL, Cavity, Cylindrical cylinder, Ray-casting
相關次數: 點閱:217下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用直接施力沉浸邊界(DFIB)法處理複雜幾何形狀的流固耦合問題,始終是一個複雜而困難的挑戰。 然而,對於可以用數學方程的形式表達的簡單幾何形狀,如圓柱體或球體,則相對容易處理。 但生活並不總是那麼容易。 因此,通過 STL 電腦圖檔在流場中呈現複雜的實體幾何形狀,將是現實世界應用中不可避免且必要的步驟。

    不幸的是,只有極少數複雜幾何形狀的例子,如飛機、汽車或風力發電機葉片,受到科學家或工程師的興趣,在 DFIB 方法下進行 FSI 問題的模擬,以供自己的機密參考。 他們幾乎不可能公開分享這些有價值的信息。

    同時,通過全尺寸風洞實驗來檢查所選 Fortran DFIB 求解器對於此類大型物體的有效性和驗證性變得不現實。

    為了解決這些問題,這裡提出的重要步驟是,在參考文獻中特定的雷諾數和網格大小模擬一些著名和流行的幾何形狀,如圓柱體(固體結構)和空腔(流體環境),這些幾何形狀已被其他研究人員公開研究數據進行了很好的驗證。 分別通過選定的 Fortran DFIB 求解器重複此類模擬,是想證明實驗室研發的Fortran DFIB 求解器處理 FSI 問題的有效性和驗證性的好方法。

    接著會從得到的有效性和驗證性基礎上,使用實驗室研發的Fortran DFIB 求解器處理對潛艇在流場中的複雜幾何形狀進行模擬,並提出模擬結果供審視。


    To deal a complex geometry by direct forcing immersed boundary(DFIB) method for a fluid-structure interaction problem is always a complicate and difficult challenge. However, for a simple geometry which can be expressed in a form of mathematical equations like a cylinder or a sphere are relatively easy to deal with. But life is not always that easy. Therefore, to present a complex solid geometry by a STL file in a flow field would be an unavoidable and necessary step for a real world application.
    Unfortunately, there are only very few examples like space shuttle , cars or blades of wind turbine were interested by scientists or engineers to perform FSI problems' simulations under DFIB method for their own confidential reference. It is almost impossible they will share this valuable information in public.
    Meanwhile, to check the validity and validation of a selected Fortran DFIB solver for such big objects through a full size wind tunnel experiment become unrealistic.
    In order to solve these problems, important steps proposed here are to simulate some famous and popular geometries like cylindrical cylinder(solid structure) and cavity(fluid environment) which are well-validation by other researchers with public announced data. To repeat such simulations by a selected Fortran DFIB solver(Tiger-F program developed by NTUST CFD lab) are good methods to testify Fortran DFIB solver's validity and validation to deal with FSI problems.
    In the end, a simulation of complex geometry of submarine in a flow field will be performed at Reynolds number 10,000 and at defined grid sizes to present its simulation result for review.
    After all, a new method for adaptive mesh refinement, ray-casting, $\eta$ of VOS, to judge a point inside a triangle will be presented for review.

    Contents Chinese Abstract i Abstract ii Acknowledgments iv Contents vii Nomenclature viii List of tables xi List of figures xiv 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Mathematics and numerical models 7 2.1 Navier-Stokes equations and Continuity equation . . . . . . . . . . . . . . . . 7 2.2 Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Chorin’s projection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Direct Forcing Immersed Boundary (DFIB) . . . . . . . . . . . . . . . . . . . 11 2.5 CAD STL file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6 Computational environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Domain, grid, boundary condition 18 3.1 Domain, grid and boundary condition . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 Cylinder’s domain, grid and boundary condition . . . . . . . . . . . . 19 3.1.2 Cavity’s domain, grid and boundary condition . . . . . . . . . . . . . . 19 3.1.3 Submarine’s domain, grid and boundary condition . . . . . . . . . . . 20 3.2 Grid Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 Results 23 4.1 Cylinder at Re 3,900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Cavity flow at Re 100 - 5,000 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3 Submarine (complex geometry) simulation at Reynolds number 10,000 . . . . . 32 5 Conclusions 41 6 Future work 42 6.1 Adaptive mesh refinement of multi-block overset grids . . . . . . . . . . . . . 42 6.2 New ray-casting method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.3 Analytically ? calculation for VOS in DFIB . . . . . . . . . . . . . . . . . . . 46 6.4 Quick method to check a point inside or outside a triangle . . . . . . . . . . . . 48 7 Appendix 51 Bibliography 64

    [1] Chern, M.-J., Kuan, Y.-H., Nugroho, G., Lu, G.-T., and Horng, T.-L. Direct-forcing
    immersed boundary modeling of vortex-induced vibration of a circular cylinder. Journal
    of Wind Engineering and Industrial Aerodynamics, 134:109–121, 2014.
    [2] Chern, M.-J., Noor, D. Z., Liao, C.-B., and Horng, T.-L. Direct-forcing immersed
    boundary method for mixed heat transfer. Communications in Computational Physics, 18
    (4):1072–1094, 2015.
    [3] Tewolde, D. G., Wei, Z.-H., and Chern, M.-J. Numerical modeling of flow past a
    volumeless and thin rigid body using direct forcing immersed boundary method.
    International Journal for Numerical Methods in Fluids, 95(1):81–106, 2023.
    [4] Raza, S. A., Irawan, Y. H., and Chern, M.-J. Effect of boundary conditions and domain size on the turbulent flow characteristics over a circular cylinder. Journal of the Chinese Institute of Engineers, 44(7):659–672, 2021.
    [5] Peskin, C. S. The immersed boundary method. Acta numerica, 11:479–517, 2002.
    [6] Kajishima, T. and Taira, K. Computational Fluid Dynamics: Incompressible Turbulent
    Flows. Springer, 2016.
    [7] Wei, Z.-H. Direct-forcing immersed boundary modeling of dynamic stall and plasma
    control of airfoil in turbulent flow. Master Thesis, National Taiwan University of Science and Technology, 2020.
    [8] Lysenko, D. A., Ertesv ̊ag, I. S., and Rian, K. E. Large-eddy simulation of the flow over a circular cylinder at reynolds number 3900 using the openfoam toolbox. Flow, Turbulence and Combustion, 89:491–518, 2012.
    [9] Kravchenko, A. G. and Moin, P. Numerical studies of flow over a circular cylinder at re = 3900. Physics of Fluids, 12(2):403–417, 2000.
    [10] Kim, J. and Choi, H. Distributed forcing of flow over a circular cylinder. Physics of Fluids, 17(3):033103, 2005.
    [11] Parnaudeau, P., Carlier, J., Heitz, D., and Lamballais, E. Experimental and numerical studies of the flow over a circular cylinder at reynolds number 3900. Physics of Fluids, 20(8):085101, 2008.
    [12] Sidebottom, W., Ooi, A., and Jones, D. A parametric study of turbulent flow past a
    circular cylinder using large eddy simulation. Journal of Fluids Engineering, 137(9),
    2015.
    [13] Ong, L. and Wallace, J. The velocity field of the turbulent very near wake of a circular
    cylinder. Experiments in Fluids, 20(6):441–453, 1996.
    [14] Takashi, N. Ale finite element computations of fluid-structure interaction problems. Computer methods in Applied Mechanics and Engineering, 112(1-4):291–308, 1994.
    [15] Souli, M., Ouahsine, A., and Lewin, L. Ale formulation for fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering, 190(5-7):659–675, 2000.
    [16] Du, Q., Gunzburger, M. D., Hou, L. S., and Lee, J. Analysis of a linear fluid-structure interaction problem. Discrete and Continuous Dynamical Systems, 9(3):633–650, 2003.
    [17] Chern, M., Lu, G., Kuan, Y., Chakraborty, S., Nugroho, G., Liao, C., and Horng, T.
    Numerial study of vortex-induced vibration of circular cylinder adjacent to plane
    boundary using direct-forcing immersed boundary method. Journal of Mechanics, 34(2):
    177–191, 2018.
    [18] Vaziri, N., Chern, M.-J., and Horng, T.-L. Simulation of dynamic stall using
    direct-forcing immersed boundary method at low reynolds number. Aircraft Engineering
    and Aerospace Technology, 2018.
    [19] You, C.-S., Chern, M.-J., Noor, D. Z., and Horng, T.-L. Numerical investigation of freely falling objects using direct-forcing immersed boundary method. Mathematics, 8(9):1619, 2020.
    [20] Chiu, P.-H. cdfib: A convolutional direct-forcing immersed boundary method for solving incompressible flows with time-varying geometries. Journal of Computational Physics, 487:112178, 2023.
    [21] Chakraborty, S., Lin, T.-W., and Chern, M.-J. Vortex motions around a vertically vibrating cylinder in oscillatory flows. Journal of Marine Science and Technology, 26(6):7, 2018.
    [22] Ghia, U., Ghia, K. N., and Shin, C. High-re solutions for incompressible flow using the navier-stokes equations and a multigrid method. Journal of Computational Physics, 48(3):387–411, 1982.
    [23] Chorin, A. J. Numerical solution of the navier-stokes equations. Mathematics of
    Computation, 22(104):745–762, 1968.
    [24] Horng, T.-L., Hsieh, P.-W., Yang, S.-Y., and You, C.-S. A simple direct-forcing immersed boundary projection method with prediction-correction for fluid-solid interaction problems. Computers & Fluids, 176:135–152, 2018.
    [25] Noor, D. Z., Chern, M.-J., and Horng, T.-L. An immersed boundary method to solve
    fluid-solid interaction problems. Computational Mechanics, 44:447–453, 2009.
    [26] Hunt, J. C., Wray, A. A., and Moin, P. Eddies, streams, and convergence zones in
    turbulent flows. Studying turbulence using numerical simulation databases, 2.
    Proceedings of the 1988 summer program, 1988.
    [27] Chong, M. S., Perry, A. E., and Cantwell, B. J. A general classification of
    three-dimensional flow fields. Physics of Fluids, 2(5):765–777, 1990.
    [28] Banko, A. and Eaton, J. A frame-invariant definition of the q-criterion. Center for Turbulence Research Annual Research Briefs, pages 181–194, 2019.

    QR CODE