簡易檢索 / 詳目顯示

研究生: 張晏銓
Yan-Quan Zhang
論文名稱: 廢丁酮溶劑燃料化系統設計及程序控制之研究
Research on Design and Process Control of Fuelization System for Waste Methyl Ethyl Ketone
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
李豪業
Hao-Yeh Lee
陳士勛
Shih-Hsun Chen
游承修
Cheng-Hsiu Yu
張紹甫
Shao-Fu Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 203
中文關鍵詞: 熱裂解有機廢溶劑模廠設計
外文關鍵詞: thermal pyrolysis, waste organic solvent, pilot design
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要為應用熱裂解技術(Pyrolysis)設計丁酮(甲乙酮)廢溶劑廠內處理程序與裝置,最終建置15噸/月級連續式廢溶劑處理工廠,丁酮溶劑經循環清洗數次含有1~3%之塗工膠,而不易使用蒸餾回收,而焚化方式存在塗工膠其高燃燒溫度點不利於穩定燃燒外,也容易產生阻塞霧化噴嘴等物理現象導致委外清運處理費逐年上升,為提升溶劑處理流程之經濟效益將應用熱裂解方式處理。熱裂解產生出之氣體含甲烷、一氧化碳、乙炔、乙烯等高熱值氣體,其熱值相當於七成市售天然氣可作為鍋爐、燃燒機或蓄熱式焚化爐進行回用。以先期建立之熱解研究機操作成果作為基礎,搭配動力學及熱力學等參數結合Aspen Plus及CFD軟體模擬結果進行系統放大化設計,最終由SolidWorks進行系統建置圖面輸出,完成防爆機房之工程建置規劃。於工程設計面考量,操作溫度於900℃之不鏽鋼材耐熱受度有限,機械設計參考商用軟件Auto-Pipe Vessel進行壓力容器級之厚度設計及考量,於流體輸送部分使用Flow-Expert軟件進行壓降計算、泵浦選型及流孔板壓力等設計依據。試驗場最終成功點燃鍋爐以及導入RTO連續運轉,產生之燃氣比例與前人研究相符,惟氣體過濾系統因產生部分焦油及碳渣混合物仍需要設置另一個單元處理,方能真正達到設備操作便利及經濟效益。


This study primarily revolves around the application of Pyrolysis technology to devise processing procedures and apparatus for the treatment of waste butanone (methyl ethyl ketone) solvents within a continuous waste solvent treatment plant, ultimately configured to handle a monthly throughput of 15 tons. The butanone solvent, after undergoing multiple cycles of cleaning, exhibits a PMMA-glue content ranging from 1% to 3%. The presence of these PMMA-glue poses hindrances to subsequent chemical and physical processes, such as distillation and incineration, leading to an incremental escalation in outsourced disposal costs over time. To augment the economic efficiency of the solvent treatment process, Pyrolysis is employed as a means to eliminate these impediments. Pyrolysis generates gases of high calorific value, including methane, carbon monoxide, acetylene, and ethylene. The calorific value of these gases approximates 70% of commercially available natural gas, rendering them suitable for reuse in boilers, combustion systems (TO), or regenerative thermal oxidizers (RTO). Leveraging preliminary results obtained from the Pyrolysis pilot plant, in conjunction with parameters encompassing kinetics and thermodynamics, Aspen Plus and Computational Fluid Dynamics (CFD) are employed for the scale-up design of the system. The ultimate engineering layouts are generated using SolidWorks, encompassing the planning of explosion-resistant facilities. In terms of engineering design considerations, the operating temperature of 900°C imposes limitations on the heat resistance of stainless steel materials. Mechanical design aspects reference the Auto-Pipe Vessel commercial software for the thickness design of pressure vessels, incorporating relevant considerations. Flow-Expert software is employed for pressure drop calculations, pump selection, and orifice plate pressure calculations within the fluid transport section. In the test facility, successful ignition of the boiler and the seamless integration of continuous RTO operations were achieved. Moreover, an additional unit for the gas filtration system should be set up to handle the mixture of partially generated tar and carbon residue, in order to truly achieve convenient equipment operation and economic benefits.

摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 熱分解法處理有機廢溶劑之簡介 4 1.3 研究動機 6 1.4 商轉化熱分解裝置總述 8 第二章 文獻回顧 14 2.1 熱裂解於不同溫度下之特性 14 2.1.1 慢速熱裂解 15 2.1.2 快速熱裂解 15 2.1.3 閃速熱裂解 15 2.2 熱裂解系統於不同加熱方式探討 16 2.2.1 水蒸氣熱裂解系統 16 2.2.2 高週波熱裂解系統 20 2.2.3 燃氣及電熱裂解系統 23 2.3 焚化爐控制系統概述 26 2.3.1 氣體焚化裝置 27 2.3.2 固體焚化裝置 30 2.4 熱分解製程產氣於後端處理設備之工藝總述 32 2.4.1 濕式洗滌器 33 2.4.2 袋式集塵設備 39 2.4.3 旋風分離裝置 45 2.4.4 熱交換裝置 48 2.5 計算流體力學模型傳熱模型概述 56 2.6 壓力容器設計及電器防爆相關規範 59 第三章 研究方法 63 3.1 有機廢溶劑處理標的物 63 3.2 模廠規劃 63 3.3 檢測儀器及裝置設備 65 3.4 中型研究機暨熱解試驗場 74 3.4.1 10kWth溶劑熱分解系統(中型研究機) 74 3.4.2 熱解試驗場 (15噸/月處理量) 76 第四章 結果與討論 78 4.1 熱分解試驗場裝置全域設計 78 4.1.1 熱分解試驗場裝置全域設計概念 79 4.1.2 桶槽類裝置設計核算 88 4.2 熱能質能計算模型用於評估裝置設計 96 4.2.1 熱分解反應器之熱力學理論計算結果 96 4.2.2 旋風換熱器節能方法設計 101 4.2.3 熱分解反應器之流體力學細算結果 105 4.2.4 高溫分解爐環境熱散估算分析 111 4.3 試驗廠控制設計方法總述 113 4.4 試驗廠廢丁酮模廠運轉結果 122 4.4.1 試運轉3小時結果(3/17) 122 4.4.2 調整處理量測試3小時結果(3/22) 126 4.4.3 熱解過程中產碳粒徑及阻塞情況分析 129 第五章 結論與未來展望 135 5.1 結論 135 5.2 未來展望 138 5.3 衍生應用規劃 139 5.3.1 二甲基甲醯胺(DMF)之熱裂解裝置 139 5.3.2 偏光片裂解尾氣以電漿處理裝置 141 5.3.3 廢塑膠連續式旋轉窯爐及批次爐裝置 143 5.3.4 廢棄樹脂熔鹽熱裂解裝置 145 5.3.5 計算流體力學應用於石灰套筒窯動力式驗證 147 5.3.6 雙軸石灰窯氣固熱傳修正及實場驗證 149 附錄 152 參考文獻 181

1. Nemeth, B., P. Lang, and L. Hegely, Optimisation of solvent recovery in two batch distillation columns of different size. Journal of Cleaner Production, 2020. 275: 122746.
2. Rundquist, E.M., C.J. Pink, and A.G. Livingston, Organic solvent nanofiltration: a potential alternative to distillation for solvent recovery from crystallisation mother liquors. Green Chemistry, 2012. 14(8): p. 2197-2205.
3. Bailey, W.J. and F. Cesare, Pyrolysis of unsaturated compounds. 2. Pyrolysis of ketones. The Journal of Organic Chemistry, 1978. 43(7): p. 1421-1423.
4. McGee, T.H. and C.E. Waring, Kinetics of the thermal decomposition of hexafluoroazomethane and the reaction of trifluoromethyl radicals with methyl ethyl ketone. The Journal of Physical Chemistry, 1969. 73(9): p. 2838-2845.
5. Norrish, R.G. and M.E. Appleyard, 191. Primary photochemical reactions. Part IV. Decomposition of methyl ethyl ketone and methyl butyl ketone. Journal of the Chemical Society (Resumed), 1934: p. 874-880.
6. Waring, C.E. and W.E. Mutter, The kinetics of the thermal decomposition of Gaseous methyl Ethyl Ketone1a. Journal of the American Chemical Society, 1948. 70(12): p. 4073-4081.
7. Bajus, M. and E. Hájeková, Thermal cracking of the model seven components mixed plastics into oils/waxes. Petroleum & Coal, 2010. 52(3).
8. Chew, K.W., et al., Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy. Environmental Pollution, 2021. 278: 116836.
9. Martínez, J.D., An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy. Renewable and Sustainable Energy Reviews, 2021. 144: 111032.
10. Naqvi, S., et al., A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resources, conservation and recycling, 2018. 136: p. 118-129.
11. Sakthipriya, N., Plastic waste management: A road map to achieve circular economy and recent innovations in pyrolysis. Science of The Total Environment, 2022. 809: 151160.
12. Zabaniotou, A., et al., Boosting circular economy and closing the loop in agriculture: Case study of a small-scale pyrolysis–biochar based system integrated in an olive farm in symbiosis with an olive mill. Environmental Development, 2015. 14: p. 22-36.
13. Collard, F.-X. and J. Blin, A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 2014. 38: p. 594-608.
14. Foong, S.Y., et al., Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chemical Engineering Journal, 2020. 389: 124401.
15. Shen, J., et al., Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel, 2009. 88(10): p. 1810-1817.
16. Neves, D., et al., Characterization and prediction of biomass pyrolysis products. Progress in energy and combustion Science, 2011. 37(5): p. 611-630.
17. Tripathi, M., J.N. Sahu, and P. Ganesan, Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and sustainable energy reviews, 2016. 55: p. 467-481.
18. Xu, C. and T. Etcheverry, Hydro-liquefaction of woody biomass in sub-and super-critical ethanol with iron-based catalysts. Fuel, 2008. 87(3): p. 335-345.
19. Bu, Q., et al., A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresource technology, 2012. 124: p. 470-477.
20. Evans, R.J. and T.A. Milne, Molecular characterization of the pyrolysis of biomass. Energy & Fuels, 1987. 1(2): p. 123-137.
21. Canabarro, N., et al., Thermochemical processes for biofuels production from biomass. Sustainable Chemical Processes, 2013. 1: p. 1-10.
22. Pütün, A.E., E. Apaydın, and E. Pütün, Rice straw as a bio-oil source via pyrolysis and steam pyrolysis. Energy, 2004. 29(12-15): p. 2171-2180.
23. Önal, E.P., B.B. Uzun, and A.E. Pütün, Steam pyrolysis of an industrial waste for bio-oil production. Fuel Processing Technology, 2011. 92(5): p. 879-885.
24. Alaya, M., B. Girgis, and W. Mourad, Activated carbon from some agricultural wastes under action of one-step steam pyrolysis. Journal of Porous Materials, 2000. 7: p. 509-517.
25. Yuan, S., et al., Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char. Bioresource Technology, 2012. 109: p. 188-197.
26. Yuan, S., et al., Nitrogen conversion during rapid pyrolysis of coal and petroleum coke in a high-frequency furnace. Applied energy, 2012. 92: p. 854-859.
27. Juste, G.L. and J.S. Monfort, Preliminary test on combustion of wood derived fast pyrolysis oils in a gas turbine combustor. Biomass and Bioenergy, 2000. 19(2): p. 119-128.
28. Buffi, M., et al., Combustion of fast pyrolysis bio-oil and blends in a micro gas turbine. Biomass and Bioenergy, 2018. 115: p. 174-185.
29. 日商Okadora. 廢油及汙泥熱裂解製程流程圖. Available from: https://www.okadora.com.tw/about_03.html.
30. Karan, J., et al., Thermal Oxidizer Basics. The John Zink Hamworthy Combustion Handbook: Volume 3–Applications, 2013: 159.
31. Wang, F., X. Lei, and X. Hao, Key factors in the volatile organic compounds treatment by regenerative thermal oxidizer. Journal of the Air & Waste Management Association, 2020. 70(5): p. 557-567.
32. Management, U.S.B.o.S.W. and J. DeMarco, Municipal-scale incinerator design and operation. 1973: US Government Printing Office.
33. Grzywacz, C.M., Monitoring for gaseous pollutants in museum environments. 2006: Getty Publications.
34. Kang, C.-M., et al., Chemical characteristics of acidic gas pollutants and PM2. 5 species during hazy episodes in Seoul, South Korea. Atmospheric Environment, 2004. 38(28): p. 4749-4760.
35. Córdoba, P., Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs. Fuel, 2015. 144: p. 274-286.
36. Lee, B.-K., et al., Evaluating the performance of a turbulent wet scrubber for scrubbing particulate matter. Journal of the Air & Waste Management Association, 2013. 63(5): p. 499-506.
37. Hutson, N.D., R. Krzyzynska, and R.K. Srivastava, Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber. Industrial & engineering chemistry research, 2008. 47(16): p. 5825-5831.
38. Cooper, C.D. and F.C. Alley, Air pollution control: A design approach. 2010: Waveland press.
39. Portney, P.R., Air pollution policy, in Public policies for environmental protection. 2016, Routledge. p. 27-96.
40. Trakumas, S., et al., Comparison of filter bag, cyclonic, and wet dust collection methods in vacuum cleaners. AIHAJ-American Industrial Hygiene Association, 2001. 62(5): p. 573-583.
41. Simon, X., et al., Downstream particle puffs emitted during pulse-jet cleaning of a baghouse wood dust collector: Influence of operating conditions and filter surface treatment. Powder Technology, 2014. 261: p. 61-70.
42. Joe, Y.-H., J. Shim, and H.-S. Park, Evaluation of the can velocity effect on a bag filter. Powder Technology, 2017. 321: p. 454-457.
43. Zhang, M., et al., An environmentally friendly technology of metal fiber bag filter to purify dust-laden airflow. Atmosphere, 2022. 13(3): 485.
44. Dirgo, J. and D. Leith, Cyclone collection efficiency: comparison of experimental results with theoretical predictions. Aerosol science and technology, 1985. 4(4): p. 401-415.
45. Davis, W.T. and A.J. Buonicore, Air pollution engineering manual. 2000: Wiley New York.
46. Cooper, D.C. and F. Alley, Air Pollution Control: a design approach. 2002: Waveland Press.
47. Wang, L., et al., A theoretical approach for predicting number of turns and cyclone pressure drop. Transactions of the ASABE, 2006. 49(2): p. 491-503.
48. Shepherd, C. and C. Lapple, Flow pattern and pressure drop in cyclone dust collectors cyclone without intel vane. Industrial & Engineering Chemistry, 1940. 32(9): p. 1246-1248.
49. Roetzel, W. and B. Spang, C3 typical values of overall heat transfer coefficients, in VDI heat atlas. 2010.
50. Sachdeva, R., Fundamentals of Engineering Heat and Mass Transfer (SI Units). 2006: New Age International Publishers.
51. Barokah, B., et al., Design of New Fin Baffle Shell and Tube Heat Exchanger for Heating of Biodiesel Fuel Based on Simulation. International journal of simulation: systems, science & technology, 2020.
52. Mangos, O. Study of the Circulation of Heat Transfer Fluid in the Permanent Magnets Thermo-Generator. in 2021 International Conference on Electromechanical and Energy Systems (SIELMEN). 2021. IEEE.
53. Mok, W.S.-L. and M.J. Antal Jr, Effects of pressure on biomass pyrolysis. II. Heats of reaction of cellulose pyrolysis. Thermochimica Acta, 1983. 68(2-3): p. 165-186.
54. Lee, J.-W. and Y.-T. Yoo, A comparative study on dimensional stability of PET and BOPP substrates for fabrication of flexible electric/electronic devices through roll-to-roll printing. Journal of Industrial and Engineering Chemistry, 2012. 18(5): p. 1647-1653.
55. Bang, Y.-M., et al., Thermal and flow characteristics of a cylindrical superheated steam generator with helical fins. Energy, 2023. 267: 126599.
56. Carta, G., Heat and Mass Transfer for Chemical Engineers: Principles and Applications. 2021: McGraw-Hill Education.
57. Moon, H.M., K. Ochi, and K. Kojima, Vapor-liquid equilibria for the ethyl methyl ketone+ water system with limited miscibility. Journal of Chemical and Engineering Data, 1995. 40(2): p. 468-471.
58. Xiang, R., S. Park, and K. Lee, Effects of cone dimension on cyclone performance. Journal of Aerosol Science, 2001. 32(4): p. 549-561.
59. Maloney, J.O., Perry Chemical Engineers Handbook. 2008: The McGraw-Hill Companies, Inc.
60. Perone, C., et al., CFD analysis of a tubular heat exchanger for the conditioning of olive paste. Applied Sciences, 2021. 11(4): 1858.
61. Paul, A., Optimization in Thermal Design of Surface Condenser by Changing Tube Material. Journal of Manufacturing Engineering, 2012. 7(3): p. 171-175.
62. Brar, L.S., R. Sharma, and K. Elsayed, The effect of the cyclone length on the performance of Stairmand high-efficiency cyclone. Powder Technology, 2015. 286: p. 668-677.
63. Wark, K. and C.F. Warner, Air pollution: its origin and control. 1981.
64. Thaore, V.B. and V.G. Gaikar, Kinetic model development for steam pyrolysis of dimethylformamide in a tubular reactor. Industrial & Engineering Chemistry Research, 2013. 52(31): p. 10601-10608.
65. Duan, S., B. Li, and W. Rong, Study on gas-solid heat transfer and decomposition reaction of calcination process in an annular shaft kiln based on the finite volume method. Processes, 2022. 10(4): 648.

無法下載圖示 全文公開日期 2034/01/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE