簡易檢索 / 詳目顯示

研究生: 謝怡蕾
Yi-lei Hsieh
論文名稱: 葡萄糖濃度調控不同粒徑白蛋白微氣泡對比劑結合超音波對於內耳細胞基因轉殖之效率
Effects of Albumin and Dextrose Concentration Mediated Microbubbles-Size Dependence of Ultrasound-Induced Inner Ear Gene Transfection in Vitro
指導教授: 廖愛禾
Ai-ho Liao
口試委員: 王智弘
Chih-hung Wang
葉秩光
Chih-kuang Yeh
沈哲州
Che-chou Shen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 60
中文關鍵詞: 內耳基因轉殖白蛋白葡萄糖微氣泡粒徑
外文關鍵詞: inner ear, gene transfection, albumin, dextrose, MBs size
相關次數: 點閱:292下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

目前許多研究指出,聽力損傷及內耳平衡失調皆與內耳毛細胞受損有關,最近,內耳基因治療,利用插入帶有功能型蛋白之基因序列,使得內耳毛細胞得以保存,並且受到保護,或使毛細胞再生。於先前的研究中,本研究團隊以未來應用於臨床為基礎,證實超音波結合自製微氣泡對比劑之技術於圓窗膜進行內耳藥物釋放的可行性,而本研究將以超音波結合微氣泡對比劑之技術,搭配微脂體之基因載體為基礎,探討不同粒徑大小的微氣泡於內耳細胞進行基因治療之可行性。根據實驗結果,分別增加對比劑成分中葡萄糖及白蛋白濃度,皆可提升微氣泡之粒徑。於相同的超音波聲場強度下,0.66 μm、1.32 μm及2.83μm之白蛋白微氣泡對比劑,基因轉殖效率提升了,30.6%,54.1%及84.7%;1.39 μm、2.12 μm及3.47 μm之葡萄糖白蛋白微氣泡對比劑,基因轉殖效率提升了,15.9%,34.3%及82.7%。本研究成功利用增加微氣泡粒徑來控制微氣泡彈性的特性,而生產出超音波結合微氣泡對比劑進行基因轉殖之理想微氣泡,並確定使用超音波進行有效的基因轉殖之中,微氣泡粒徑對於其振盪行為的重要性,以及評估出使用超音波進行內耳細胞基因轉殖之最佳微氣泡粒徑。


Hearing loss is the most common sensory impairment in humans, and the causes are dysfunction, injury, or death of the hair cell. Recently, gene therapy has been reported to insert genes encoding functional proteins that can preserve, protect, or regenerate hair cells in the inner ear. In our previous study, a basis for microbubbles (MBs) ultrasound (US)-mediated techniques with therapeutic medication delivery to the inner ear for future application in humans has been demonstrated. In this study, cationic liposomes were as the delivery vectors and the feasibility of albumin MBs US-mediated techniques in different sizes MBs with gene delivery to the inner cells has been investigated. According to the results, the MBs size was in direct proportion to the increase of the concentration of albumin or dextrose, respectively. With the same US energy, the transfection of albumin MBs with 0.66, 1.32, 2.83 μm in diameter increase 30.6% , 54.1% and 84.7% . The transfection of dextrose albumin MBs with 1.39, 2.12, 3.47μm in diameter increase 15.9%, 34.3% and 82.7%. To increase MB size and control property of elasticity produce desired levels of US mediated gene transfection. The MBs sizes in different condition have been determined and their oscillation behavior is important for effective gene transfection using US. The optimal MBs size for gene transfection in the inner ear cells with US has been evaluated.

目錄 中文摘要 I ABSTRACT II 誌謝 III 目錄 V 圖表索引 VII 圖索引 VII 表索引 VIII 第1章 緒論 1 1-1 超音波簡介及應用 1 1-2 微氣泡對比劑簡介及結合超音波之應用 3 1-3 內耳基因治療簡介 6 1-4 超音波結合微氣泡進行基因轉殖治療之簡介 9 1-5 不同粒徑大小的微氣泡結合超音波之研究發展 11 1-6 研究動機與目的 15 第2章 實驗-材料與方法 16 2-1 對比劑製作與量測 16 2-1-1 白蛋白微氣泡對比劑製作 16 2-1-2 白蛋白微氣泡對比劑粒徑及濃度分析 18 2-1-2-1 白蛋白微氣泡對比劑濃度量測 18 2-1-2-2 白蛋白微氣泡對比劑粒徑量測 19 2-2 超音波轉殖儀 20 2-3 不同粒徑大小的白蛋白微氣泡對比劑打破效率測試 20 2-4 細胞培養 22 2-5 細胞種植 23 2-6 Plasmid 23 2-7 不同粒徑大小的對比劑結合超音波之細胞轉染效率 24 2-7-1細胞實驗分組 24 2-7-1-1自製對比劑結合超音波之轉染效率 25 2-7-1-2不同粒徑大小的白蛋白微氣泡結合超音波之轉染效率 26 2-7-1-3不同粒徑大小的葡萄糖白蛋白微氣泡結合超音波之轉染效率 27 2-7-2細胞實驗方法 28 2-8 細胞存活率分析 30 2-9 統計分析 30 第3章 結果 31 3-1 改變對比劑成分比例對微氣泡粒徑及濃度的影響 31 3-1-1 白蛋白微氣泡對比劑濃度分析結果 31 3-1-2 白蛋白微氣泡對比劑粒徑分析結果 34 3-2不同粒徑大小的微氣泡對比劑打破效率結果 38 3-3 不同粒徑大小的對比劑結合超音波之細胞轉染效率 41 3-3-1自製對比劑結合超音波之轉染效率 41 3-3-2不同粒徑大小的白蛋白微氣泡結合超音波之轉染效率 44 3-3-3不同粒徑大小的葡萄糖白蛋白微氣泡結合超音波之轉染效率 47 3-4細胞存活率分析 50 第4章 討論 51 第5章 結論 55 參考文獻 56 圖表索引 圖索引 圖1.1,微氣泡震盪 4 圖1.2,脂質球殼及聚合物球殼之微氣泡在不同聲壓強度下所發生變化的示意圖 5 圖1.3,超音波結合微氣泡對比劑應用於圓窗膜開啟通透度之實驗示意圖 7 圖1.4,利用超音波聲孔效應進行基因轉殖 9 圖1.5,差速離心法,分離微氣泡大小示意圖 13 圖2.1,對比劑製作流程圖 16 圖2.2,COULTER COUNTERR粒徑分析儀量測裝置示意圖 18 圖2.3,Plasmid Map 23 圖2.4,細胞實驗架構圖。 29 圖3.1,改變微氣泡中白蛋白成分比例對微氣泡濃度之影響 32 圖3.2,改變微氣泡中葡萄糖成分比例對微氣泡濃度之影響 33 圖3.3,改變微氣泡中白蛋白成分比例對微氣泡粒徑之影響 35 圖3.4,改變微氣泡中葡萄糖成分比例對微氣泡粒徑之影響 36 圖3.5,三種不同粒徑大小之白蛋白微氣泡對比劑打破效率 39 圖3.6,三種不同粒徑大小之葡萄糖白蛋白微氣泡對比劑打破效率 40 圖3.7,超音波結合自製微氣泡增強基因轉染之螢光表現量結果 42 圖3.8,超音波結合微氣泡增強基因轉殖效率之螢光強度值量測結果 43 圖3.9,改變白蛋白濃度製成不同粒徑大小之微氣泡結合超音波能量,其基因轉染之螢光表現量結果 45 圖3.10,改變白蛋白濃度製成不同粒徑大小之微氣泡結合超音波能量,其基因轉染效率之螢光強度值量測結果 46 圖3.11,改變葡萄糖濃度製成不同粒徑大小之微氣泡結合超音波能量,其基因轉染之螢光表現量結果 48 圖3.12,改變葡萄糖濃度製成不同粒徑大小之微氣泡結合超音波能量,其基因轉染效率之螢光強度值量測結果 49 圖3.13,不同超音波能量結合微氣泡對細胞存活率之影響 50 表索引 表1.1,目前使用於研究中結合超音波進行基因轉殖及藥物傳輸之對比劑 10 表1.2,調整微氣泡成分、超音波震盪能量及時間,製作出不同粒徑之微氣泡 14 表2.1,本研究所使用之微氣泡成分比例 17 表3.1,不同濃度比例配製成微氣泡量測微氣泡濃度結果 32 表3.2,不同濃度比例配製成微氣泡量測微氣泡粒徑結果 34 表3.3,粒徑與白蛋白微氣泡成分比例關係表 35 表3.4,不同成分及粒徑之對比劑於同一超音波能量下的打破效率 39

[1] 陳思嘉. 靶向超音波於血栓溶解之研究. Graduate Institute of Biomedical Electronics and Bioinformatics College of Electrical Engineering & Computer Science National Taiwan University. 2009.
[2] Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nature reviews Cancer. 2005;5:321-7.
[3] van Wamel A, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M, et al. Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. Journal of controlled release : official journal of the Controlled Release Society. 2006;112:149-55.
[4] Barnett SB, ter Haar GR, Ziskin MC, Nyborg WL, Maeda K, Bang J. Current status of research on biophysical effects of ultrasound. Ultrasound Med Biol. 1994;20:205-18.
[5] Liang HD, Lu QL, Xue SA, Halliwell M, Kodama T, Cosgrove DO, et al. Optimisation of ultrasound-mediated gene transfer (sonoporation) in skeletal muscle cells. Ultrasound Med Biol. 2004;30:1523-9.
[6] Alonso A, Reinz E, Fatar M, Hennerici MG, Meairs S. Clearance of albumin following ultrasound-induced blood-brain barrier opening is mediated by glial but not neuronal cells. Brain research. 2011;1411:9-16.
[7] N.R D. Head and neck cancers: Results of thermoradiotherapy versus radiotherapy. International Journal of Hyperthermia. 1990;6:479-86.
[8] Zhou YF. High intensity focused ultrasound in clinical tumor ablation. World journal of clinical oncology. 2011;2:8-27.
[9] Tinkov S, Bekeredjian R, Winter G, Coester C. Microbubbles as ultrasound triggered drug carriers. Journal of pharmaceutical sciences. 2009;98:1935-61.
[10] Lu S-C, Yeh C-K. 包覆空氣微脂體於高頻超音波影像與聲學非線性性質研究與應用. 國立清華大學生醫工程與環境科學研究所碩士學位論文. 2008.
[11] Chang S, Guo J, Sun J, Zhu S, Yan Y, Zhu Y, et al. Targeted microbubbles for ultrasound mediated gene transfection and apoptosis induction in ovarian cancer cells. Ultrasonics sonochemistry. 2013;20:171-9.
[12] Fan CH, Ting CY, Liu HL, Huang CY, Hsieh HY, Yen TC, et al. Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment. Biomaterials. 2013;34:2142-55.
[13] Ting CY, Fan CH, Liu HL, Huang CY, Hsieh HY, Yen TC, et al. Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials. 2012;33:704-12.
[14] Ogawa K, Tachibana K, Uchida T, Tai T, Yamashita N, Tsujita N, et al. High-resolution scanning electron microscopic evaluation of cell-membrane porosity by ultrasound. Med Electron Microsc. 2001;34:249-53.
[15] Lawrie A, Brisken AF, Francis SE, Tayler DI, Chamberlain J, Crossman DC, et al. Ultrasound Enhances Reporter Gene Expression After Transfection of Vascular Cells In Vitro. Circulation. 1999;99:2617-20.
[16] Ward M, Wu J, Chiu J-F. Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents. The Journal of the Acoustical Society of America. 1999;105:2951-7.
[17] Wu J, Ross JP, Chiu J-F. Reparable sonoporation generated by microstreaming. The Journal of the Acoustical Society of America. 2002;111:1460-4.
[18] Lauterborn W, Kurz T, Geisler R, Schanz D, Lindau O. Acoustic cavitation, bubble dynamics and sonoluminescence. Ultrasonics sonochemistry. 2007;14:484-91.
[19] Morgan KE, Allen JS, Dayton PA, Chomas JE, Klibaov AL, Ferrara KW. Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on. 2000;47:1494-509.
[20] 賴俊延. 超音波穴蝕效應於基因傳遞效率之研究: 臺灣大學; 2005.
[21] Koch S, Pohl P, Cobet U, Rainov NG. Ultrasound enhancement of liposome-mediated cell transfection is caused by cavitation effects. Ultrasound in Medicine & Biology. 2000;26:897-903.
[22] Greenleaf WJ, Bolander ME, Sarkar G, Goldring MB, Greenleaf JF. Artificial Cavitation Nuclei Significantly Enhance Acoustically Induced Cell Transfection. Ultrasound in Medicine & Biology. 1998;24:587-95.
[23] Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev. 2008;60:1153-66.
[24] McCall AA, Swan EE, Borenstein JT, Sewell WF, Kujawa SG, McKenna MJ. Drug delivery for treatment of inner ear disease: current state of knowledge. Ear Hear. 2010;31:156-65.
[25] Forge A, Li L, Corwin JT, Nevill G. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science (New York, NY). 1993;259:1616-9.
[26] Kawamoto K, Ishimoto S, Minoda R, Brough DE, Raphael Y. Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2003;23:4395-400.
[27] Kesser BW, Lalwani AK. Gene therapy and stem cell transplantation: strategies for hearing restoration. Advances in oto-rhino-laryngology. 2009;66:64-86.
[28] Ryals BM, Rubel EW. Hair cell regeneration after acoustic trauma in aduklt coturnix quail. Science (New York, NY). 1988;240.
[29] Chen P, Johnson JE, Zoghbi HY, Segil N. The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. 2002.
[30] Dazert S, Aletsee C, Brors D, Gravel C, Sendtner M, Ryan A. In vivo adenoviral transduction of the neonatal rat cochlea and middle ear. Hear Res. 2001;151:30-40.
[31] Praetorius M, Baker K, Weich CM, Plinkert PK, Staecker H. Hearing preservation after inner ear gene therapy: the effect of vector and surgical approach. ORL; journal for oto-rhino-laryngology and its related specialties. 2003;65:211-4.
[32] Shih CP, Chen HC, Chen HK, Chiang MC, Sytwu HK, Lin YC, et al. Ultrasound-aided microbubbles facilitate the delivery of drugs to the inner ear via the round window membrane. Journal of controlled release : official journal of the Controlled Release Society. 2013;167:167-74.
[33] Duvshani-Eshet M, Machluf M. Therapeutic ultrasound optimization for gene delivery: a key factor achieving nuclear DNA localization. Journal of controlled release : official journal of the Controlled Release Society. 2005;108:513-28.
[34] Li XH, Zhou P, Wang LH, Tian SM, Qian Y, Chen LR, et al. The targeted gene (KDRP-CD/TK) therapy of breast cancer mediated by SonoVue and ultrasound irradiation in vitro. Ultrasonics. 2012;52:186-91.
[35] Kim YS, Rhim H, Choi MJ, Lim HK, Choi D. High-intensity focused ultrasound therapy: an overview for radiologists. Korean journal of radiology : official journal of the Korean Radiological Society. 2008;9:291-302.
[36] Zhigang W, Zhiyu L, Haitao R, Hong R, Qunxia Z, Ailong H, et al. Ultrasound-mediated microbubble destruction enhances VEGF gene delivery to the infarcted myocardium in rats. Clinical imaging. 2004;28:395-8.
[37] Zheng MM, Zhou XY, Wang LP, Wang ZG. Experimental research of RB94 gene transfection into retinoblastoma cells using ultrasound-targeted microbubble destruction. Ultrasound Med Biol. 2012;38:1058-66.
[38] Suzuki R, Takizawa T, Negishi Y, Hagisawa K, Tanaka K, Sawamura K, et al. Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound. Journal of controlled release : official journal of the Controlled Release Society. 2007;117:130-6.
[39] Taniyama Y, Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K, et al. Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene therapy. 2002;9:372-80.
[40] Zhang C, Zhang X, Liu C, Wang J, Liu X, Li H, et al. Expression of endostatin mediated by a novel non-viral delivery system inhibits human umbilical vein endothelial cells in vitro. Molecular biology reports. 2010;37:1755-62.
[41] Nomikou N, Tiwari P, Trehan T, Gulati K, McHale AP. Studies on neutral, cationic and biotinylated cationic microbubbles in enhancing ultrasound-mediated gene delivery in vitro and in vivo. Acta biomaterialia. 2012;8:1273-80.
[42] Caskey CF, Kruse DE, Dayton PA, Kitano TK, Ferrara KW. Microbubble oscillation in tubes with diameters of 12, 25, and 195 microns. Applied Physics Letters. 2006;88:033902.
[43] Sassaroli E, Hynynen K. Cavitation Threshold of Microbubbles in Gel Tunnels by Focused Ultrasound. Ultrasound in Medicine & Biology. 2007;33:1651-60.
[44] Sassaroli E, Hynynen K. Resonance frequency of microbubbles in small blood vessels: a numerical study. Phys Med Biol. 2005;50:5293-305.
[45] Tung YS, Vlachos F, Feshitan JA, Borden MA, Konofagou EE. The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice. J Acoust Soc Am. 2011;130:3059-67.
[46] Qin S, Ferrara KW. The natural frequency of nonlinear oscillation of ultrasound contrast agents in microvessels. Ultrasound Med Biol. 2007;33:1140-8.
[47] Choi JJ, Feshitan JA, Baseri B, Shougang W, Yao-Sheng T, Borden MA, et al. Microbubble-Size Dependence of Focused Ultrasound-Induced Blood Brain Barrier Opening in Mice In Vivo. Biomedical Engineering, IEEE Transactions on. 2010;57:145-54.
[48] 王鴻偉. 用三倍頻發射相位法於對比劑諧波影像. 國立台灣科技大學電機工程系碩士學位論文. 2008.
[49] 王裕鈞. 使用三倍頻發射相位法於組織諧波信號分析. 國立台灣科技大學電機工程學系碩士學位論文. 2007.
[50] 邱奕元. 使用啾聲信號之三倍頻發射相位法於諧波影像偵測. 國立台灣科技大學電機工程學系碩士學位論文. 2009.
[51] 李承翰. 高頻超音波血流成像. 國立台灣大學電機工程學研究所碩士論文. 2005.
[52] Borrelli MJ, O’Brien Jr WD, Hamilton E, Oelze ML, Wu J, Bernock LJ, et al. Influences of Microbubble Diameter and Ultrasonic Parameters on In Vitro Sonothrombolysis Efficacy. Journal of Vascular and Interventional Radiology. 2012;23:1677-84.e1.
[53] Tung Y-S, Choi JJ, Baseri B, Konofagou EE. Identifying the Inertial Cavitation Threshold and Skull Effects in a Vessel Phantom Using Focused Ultrasound and Microbubbles. Ultrasound in Medicine & Biology. 2010;36:840-52.
[54] Borrelli MJ, O'Brien WD, Jr., Bernock LJ, Williams HR, Hamilton E, Wu J, et al. Production of uniformly sized serum albumin and dextrose microbubbles. Ultrasonics sonochemistry. 2012;19:198-208.
[55] Browning RJ, Mulvana H, Tang MX, Hajnal JV, Wells DJ, Eckersley RJ. Effect of albumin and dextrose concentration on ultrasound and microbubble mediated gene transfection in vivo. Ultrasound Med Biol. 2012;38:1067-77.
[56] Feshitan JA, Chen CC, Kwan JJ, Borden MA. Microbubble size isolation by differential centrifugation. Journal of colloid and interface science. 2009;329:316-24.
[57] YANG Fen-rong, WEN Hong-jie, Qing Z. Comparison of Several Measurement Methods of Particle Size. Physics Examination and Testing. 2005;23.
[58] https://www.beckmancoulter.com/wsrportal/wsr/industrial/products/coulter-counter-analyzers/multisizer-3/index.htm. 2013.
[59] 董俊興. 經摻雜之二氧化鈦觸媒膜光分解性質之研究. 國立中央大學化學工程研究所碩士學位論文. 2001.
[60] Kalinec GM, Webster P, Lim DJ, Kalinec F. A cochlear cell line as an in vitro system for drug ototoxicity screening. Audiol Neurootol. 2003;8:177-89.
[61] 張芳瑜. 磁共振造影及光熱治療之雙功能複合材料:二氧化矽/氧化鐵/金奈米管與Gd2O(CO3)2•H2O/二氧化矽/金複合粒子的製備與探討. 國立成功大學化學研究所碩士論文. 2008.
[62] Ngamwongsatit P, Banada PP, Panbangred W, Bhunia AK. WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. Journal of microbiological methods. 2008;73:211-5.
[63] Lai C-Y, Wu C-H, Chen C-C, Li P-C. Quantitative relations of acoustic inertial cavitation with sonoporation and cell viability. Ultrasound in Medicine & Biology. 2006;32:1931-41.
[64] Datta S, Coussios C-C, Ammi AY, Mast TD, de Courten-Myers GM, Holland CK. Ultrasound-Enhanced Thrombolysis Using DefinityR as a Cavitation Nucleation Agent. Ultrasound in Medicine & Biology. 2008;34:1421-33.
[65] 賴寬裕. Ultrasonic Therapy Using Cavitation: Induction and Detection. 國立台灣大學電機工程學研究所碩士論文. 2004.
[66] Tlaxca JL, Anderson CR, Klibanov AL, Lowrey B, Hossack JA, Alexander JS, et al. Analysis of in vitro Transfection by Sonoporation Using Cationic and Neutral Microbubbles. Ultrasound in Medicine & Biology. 2010;36:1907-18.
[67] Liao A-H, Liu H-L, Su C-H, Hua M-Y, Yang H-W, Weng Y-T, et al. Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood–brain barrier opening and concurrent MR and ultrasound imaging. Physics in Medicine and Biology. 2012;57:2787-802.
[68] Fang Nie, Hui-Xiong Xu, Qing Tang, Lu M-D. Microbubble -enhanced ultrasound exposure improves gene transfer in vascular endothelial cells. World Journal of Gastroenterology. 2006:7508-13.

QR CODE