簡易檢索 / 詳目顯示

研究生: 戴妤潔
Yu-chieh Tai
論文名稱: 發泡輕質材料物理性質之探討
The study on the physical properties of the foamed lightweight materials
指導教授: 黃兆龍
Chao-Lung Hwang
口試委員: 沈得縣
none
林凱隆
none
鄭大偉
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 159
中文關鍵詞: 泡沫輕質水泥漿體卜作嵐摻料偏高嶺土
外文關鍵詞: Physically Foam, Lightweight Paste, Pozzolanic Cement, Meta-kaolin.
相關次數: 點閱:259下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用發泡機具產生泡沫,再將泡沫與卜作嵐水泥漿體或無機聚合物膠體均勻拌合,分別製成發泡輕質水泥漿體與發泡輕質無機聚合物。發泡輕質水泥漿體利用卜作嵐摻料(飛灰、爐石粉)搭配強塑劑的使用;而發泡輕質無機聚合物則是使用偏高嶺土,以鹼激發得到的偏高嶺土膠體。發泡輕質水泥漿體以單位重為設計標準,採用三種水膠比(W/B = 0.3、0.4、0.5)和兩種泡沫率(20%、30%)共設計出6組配比;發泡輕質無機聚合物則以達到最佳發泡效果作為設計標準,採用一種泡沫率為20%、三種液固比(L/S = 0.6、0.7、0.8)、三種矽鈉比(Si/Na = 1.0、1.2、1.4)和兩種鹼當量(18%、22%)共設計6組配比。製成發泡體後,量測新拌性質(發泡體積、流度值、水化溫度)和硬固性質(單位重、吸水率、抗壓強度、抗彎強度、長度變化量、熱傳導係數、吸音值),最後根據各種配比進行成本的計算與分析。結果顯示,發泡輕質水泥漿體單位重可控制介於345~652 kg/m3,發泡輕質無機聚合物單位重介於263~638 kg/m3,為一種輕質、低強度、低乾縮量和高隔熱能力的經濟材料。


    This study is using foam agent to product foam by foaming machine, and mixing together with foam and pozzolanic cement paste or Meta-Kaolin colloid. Then could get the foaming lightweight cement paste, which is made from pozzolanic material, such as fly ash and slag, and controls the flow by SP.,and foaming lightweight geopolymer, which is made from the alkali activate of Meta-Kaolin to product geopolymer. Malaysia Kaolin burns in 700℃ into Meta-Kaolin. These 6 mix proportions of foaming lightweight cement paste, which follow Water-to-Binder ration(W/B) is 0.3 to 0.5, foam ratio are 20% and 30%. The others foaming lightweight geopolymer mix proportions, which follow foam ratio 20%, Liquit-to-Solid ratio(L/S) are 0.6 to 0.8, Silicon-to-Sodium ratio(SiO2/Na2O) are 1.0、1.2、1.4 and alkali equivalent are 18% and 22%. The foamed lightweight materials have the fresh test, they are foamed valume, flow and hydration temperature, and harden test in different ages, it have desity, absorption capacity, compressive strength, flexural strength, shrinkage, thermal conductivity and absorption coefficient. Finally, the cost will calculate by the mix proportion, and to assesse the economic. The results of tast have shown that the foamed lightweight cement paste desity is between 345 to 652 kg/m3,and the foamed lightweight geopolymer desity is between 263 to 638. The foaming lightweight materials are a kind of low density, discontinuous holes, low strength, insulation and high economic materials.

    摘 要I ABSTRACTII 誌 謝V 目 錄VII 表 目 錄IX 圖 目 錄XI 符 號 說 明XV 第一章 緒論1 1-1 研究背景1 1-2 研究目的2 1-3 研究方法與範圍2 1-4 研究流程3 第二章 文獻回顧5 2-1 發泡輕質材料概述5 2-2 無機聚合物12 2-3 發泡輕質材料在工程上之應用19 第三章 發泡輕質材料試驗計畫35 3-1 計畫概要35 3-2 試驗材料36 3-3 試驗變數與項目37 3-4 發泡輕質材料配比設計與試體製作39 3-5 試驗方法與設備45 第四章 試驗結果與分析61 4-1 發泡輕質材料的新拌性質61 4-2 發泡輕質材料的硬固性質70 4-3 發泡輕質材料成本分析90 第五章 結論與建議131 5-1 結論131 5-2 建議131 參考文獻133

    1.邱軍付、羅淑湘、魯虹、孫桂芳和王永魁,「大摻量粉煤灰超輕泡沫混凝土的試驗研究」,新型建築材料,2013年第1期,第74-77頁(2013)。
    2.劉陽、王晴和許峰,「泡沫混凝土的製備及多功能性」,混凝土,第278期,第120-122頁(2012)。
    3.袁俊,「粉煤灰泡沫混凝土屋面材料的研究」,水泥工程,2010年第4期,第82-84頁(2010)。
    4.徐開勝,「泡沫混凝土的發展及應用」,四川建材,第4期,第38卷,第28-29頁(2012)。
    5.蔡宗翰,「綠水泥與綠水泥混凝土之性質探討」,碩士論文,台灣科技大學,台北(2011)。
    6.Valore, R. C., “Cellular concrete part 1 composition and methods of production.”, ACI J1954;50:773–96(1954).
    7.顏聰,土木材料,台中(2006)。
    8.Andrew, S., William, K.,“Lightweight Concrete Third Edition. Formerly, Building Research Establishment”, Garston, Watford, U.K., pp.3-10(1978).
    9.London on 14-15th, “Proceedings of the Second International Congress on Lightweight Concrete held in”, p.28(1980).
    10.Puttappa, C.G., Rudresh, A. Ibrahim, K.U., Muthu, H.S., Raghavendra., “Mechanical Properties of Foamed Concrete.”, ICCBT(2008).
    11.張磊、楊鼎宜,「輕質發泡混凝土的研究及應用現狀」,混凝土190,第44-48頁(2005)。
    12.姜豔芝,「泡沫混凝土在我國建築施工中的應用」,科學與財富第3期,第263頁(2013)。
    13.李永濤、韓春雨,「淺談泡沫混凝土在我國建築施工中的應用」,科技風第19期,第217頁(2009)。
    14.Jones, M.R., McCarthy, A., “Behaviour and assessment of foamed concrete for construction applications.”, London: Thomas Telford. pp. 61–88(2005).
    15.Rosen, M.J., “Surfactants and Interfacial Phenomena 3 ed.”, Hoboken New Jersey: John Wiley & Sons Inc(2004).
    16.Bhairi, S.M., Mohan, C., “Detergents- A guide to the properties and uses of detergents in biological systems”, EMD Biosciences (2007).
    17.Ramamurthy, K., Kunhanandan, N.E., Indu, S.R.G., “A classification of studies on properties of foam concrete.”, Cement & Concrete Composites 31, pp.388-396(2009).
    18.杨永、衣兰梅、王如峰、姜涛,发泡剂与发泡机-发泡菱镁水泥成败之关键,济南镁嘉图新型材料开发有限公司,山东济南(2012)。
    19.Byun, K. J., Song, H.W., Park, S.S., “Development of structural lightweight foamed concrete using polymer foam agent.”, ICPIC-98(1998).
    20.Koudriashoff, I.T., “Manufacture of reinforced foam concrete roof slabs.”, J Am Concr Inst 21(1), pp.37–48(1949).
    21.Pugh, RJ., “Foaming, foam films, antifoaming and defoaming.”, Adv Colloid Interface Sci 64, pp.67–72(1996).
    22.Drew, M., “Surfactant science and technology.”, New York: VCH Publishers (1998).
    23.Hutzler, S., Cox, S.J., Wang, G., “Foam drainage in two dimensions.”, Colloids Surfaces A–Physicochem Eng Aspects 263: 78-83(2005).
    24.Jalmes, A.S., Peugeot, M.L., Ferraz, H., Langevin, D., “Differences between protein and surfactant foams: Microscopic properties, stability and coarsening.”, Colloids Surfaces A–Physicochem Eng Aspects 263: 219-25(2005).
    25.Tan, S.N., Fornaseiro, D., Sedev, R., Ralston, J., “The role of surfactant structure: 233-8(2005).
    26.徐文、錢冠龍、化子龍,「用化學方法製備泡沫混凝土的試驗研究」,混凝土與水泥製品第188期,第1-4頁(2011)。
    27.Yokote, T., Fukui, K., Miyanaga, M., Watuji, T., Light Met 45, Jpn J. Inst, pp.162-172(1995).
    28.Cubberly, W.H., Stedfeld, R.L., Metals Handbook Vol. 7, 9th Edition ASM Metals Park OH, pp. 593-596(1984).
    29.Tonysmith, Polym Paints Color J. 174, pp.678-679(1984).
    30.King, D., Polym Paints Color J. 183, pp.S1-S2(1993).
    31.James, J.D., Wilshire, B., “New magnetic applicators and magneticflake powders for revealing latent fingerprints”, Alumin. Ind. 11, pp.32-33(1992).
    32.James, J.D., Pounds, C.A., Wilshire, B., “Flake metal powders for revealing latent fingerprints.”, Powder Metall. 34, pp.39-43(1991).
    33.鄭欽仁,「下水污泥灰發泡混凝土之輕質化與隔熱特性研究」,碩士論文,中央大學,桃園(2002)。
    34.Goual, M.S., Bali, A., Barquin, F.de., Dheilly, R.M., Quéneudec, M., “Isothermal moisture properties of Clayey Cellular Concretes elaborated from clayey waste, cement and aluminium powder”, Cement and Concrete Research 36, pp.1768–1776. (2006)
    35.許皓翔,「TFT-LCD廢玻璃以鹼激發方式製成防火隔熱材料之研究」,碩士論文,宜蘭大學,宜蘭(2012)。
    36.Kumar, R., Bhattacharjee, B., “Porosity, pore size distribution and in situ strength of concrete.”, Cement and Concrete Research 33 (1), pp.155–64(2003).
    37.Nambiar, E.K., Kunhanandan, Ramamurthy, K., “Air-void characterisation of foam concrete.”, Cement and Concrete Research Vol.37, No.2, pp.221-230(2007).
    38.Khamphee, J., Theerawat, S., Prinya, C., “Cellular Lightweight Concrete Containing Pozzolan Materials”, Procedia Engineering 14, pp.1157–1164(2011).
    39.行政院環境保護署,噪音原理/防制材料使用手冊(2010)。
    40.Aamr-Daya, E., Langlet, T., Benazzouk, A., Quéneudec, M., “Feasibility study of lightweight cement composite containing flax by-product particles: Physico-mechanical properties”, Cement & Concrete Composites 30, pp.957–963(2008).
    41.Arellano, A.R., BurciagaDíaz, O., Escalante, G.JI., “Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates.”, Constr Build Mater24(7):1166–75(2010).
    42.Esmaily, H., Nuranian, H., “Non-autoclaved high strength cellular concrete from alkali activated slag.”, Construction and Building Materials 26, pp.200–206 (2012).
    43.Halina, Z., “Effect of micrcpore structure on cellular concrete shrinkage, cement AND concrete research. Vol. 7”, Pergatnon Press, Inc Printed in the United States, pp.323-332(1977).
    44.The Aberdeen Group All rights reserved, Low density concretes- For insulation and fill(1981).
    45.Damian, B., Zbigniew, Z., Manko, “Influence of selected hydrophobic agents on some properties of autoclaving cellular concrete (ACC)”, Construction and Building Materials 25, pp.282–287(2011).
    46.Ali, N., Shadi, R., Ali, B., “Designing water resistant lightweight geopolymers produced from waste materials”, Materials and Design 35, pp.296–302(2012).
    47.黃兆龍,混凝土性質與行為,詹氏書局,台北(2002)。
    48.Concrete Construction, “Perlite Roof Deck and Insulating Concrete”, pp.95-97(1961).
    49.王奕惟,「發泡無機聚合物之開發及耐熱性能研究」,碩士論文,台北科技大學,台北(2009)。
    50.Paul J.T., James P., William, M., “A method for assessment of the freeze–thaw resistance of preformed foam cellular concrete”, Cement and Concrete Research 34, pp.889–893(2004).
    51.Joseph, D., GEOPOLYMER Chemistry & Applications 2nd edition, Institut Geopolymere 16 rue Galilee F-02100 Saint-Quentin France(2008).
    52.Sabir, B. B., Wild, W., Bai, J., “Metakaolin and calcined clays as pozzolans for concrete: a erview.”, Cement and Concrete Composites 23, pp.441-454(2001).
    53.Gao, Q., Zhang, Z. and Zhang, X., “The relationship of structure and pozzolanic activity of kaolinite at different calcination temperatures.”, 2nd Beijing International Symposium on Cement and Concrete, Beijing, P.R. China 1, pp.377-382(1989).
    54.陳秋艷、那琼,「偏高嶺土在我國的潛在應用」,礦業研究與開發第二十四卷第四期,第31-33頁(2004)。
    55.Shi, C., Day, R.L., “Comparison of different methods for enhancing reactivity of pozzolans.”, Cement and Concrete Research, 31(5), pp.813-818(2001).
    56.李元凱,「偏高嶺土聚合膠體工程性質之研究」,碩士論文,台灣科技大學,台北(2008)。
    57.Janbor, J., “Relation between phase composition, overall porosity and strength of hardened lime-pozzolan paste.”, Magazine of Concrete Research, 15(45), pp.131-142(1963).
    58.Ashbridge, A.H., Jones, T.R., Osborne, G.J., “High performance metakolin concrete: results of large scale trials in aggressive environments.”, International Congress on Concrete in the Service of Mankind. June 24-28. Dundee, UK, pp.13-24(1996).
    59.Caldarone, M.A., Gruber, K.A., Burg, R.G., “High reactive metakolin: A new admixture.”, Concrete International, 16(11), 37-40(1994).
    60.Hooton, R.D., Gruber, K., Boddy, A., “The chloride penetration resistance of concrete containing high-reactivity metakolin.”, PCI/FHWA International Symposium on High Performance Concrete, New Orleans, LA, USA, pp.172-183(1997).
    61.Glukhovsky, V.D., Rostovkaya, G.S., Rumyna, G.V., “High strength slag-alkali cement.”, 7th International Congress on the Chemistry of Cement, Paris, France, III, pp.164-168(1980).
    62.Caijun S., Pavel V.K., Della R., Alkali-Activated Cement amd Concretes, Taylor & Francis is an imporint of the Taylor & Francis Group,(2006).
    63.Vail, J.G., Soluble Silicates in Industry, American Chemical Society Monograph Series, The American Catalog Company, Inc., New York, USA(1928).
    64.Shi, C., Day, R.L., “Factors affecting early hydration characteristics of alkali-slag cement.”, Cement and Concrete Research, 26(3), pp.439-448(1996).
    65.Cincotto, M.A., Melo, A.A.. Repette, W.L., “Effect of Different Activators Type and Dosages and Relation with Autogenous Shrinkage of Activated Blast Furnace Slag Cement.”, Proceeding of the 11th International Congress on the Chemistry of Cement, Durban, South African, pp.1878-1888(2003).
    66.Yuan, R., Gao, Q., Quyang, S., “S tudy on structure and latent hydraulic activity of slag and its activation mechanism.”, Journal of Wuban University of Technology (in Chinese), P. R. China, 3, pp.297-303(1987).
    67.Krizan, D., Zivanovic, B., “Effects of dosage and modulus of water glass on early hydration of alkali-slag cements.”, Cement and Concrete Research, 32(8), pp.1181-1188(2002).
    68.Xu, H., Van, D. JSJ., “The Geopolymerisation of Alumino-silicate Minerals.”, International Journal of Mineral Processing, 59(3), pp.247-266(2000).
    69.Fernandez-Jimenez, A., Palomo, J.G., Puertas, F., “Alkali-Activated Slag Mortars Mechanical Strength Befaviour”, Cement and Concrete Research, vol. 29., pp.1313-1321(1999).
    70.WK, Van D.JSJ., “The effects of inorganic salt contamination on the strength and durability of geopolymer.”, Colloids Surf A 2002;211(2–3):115–26(2002).
    71.戴詩潔,「高嶺石鋁矽酸鹽聚合材料之研究」,碩士論文,台北科技大學,台北(2005)。
    72.Glukhovsky, V.D., Soild Silicates, Gruntosilikaty, Kiev, USSR: Budivelnik Publisher(1959).
    73.Glukhovsky, V.D., “Their Properties, Technology of Manufacturing and Fields of Application.”, Soild Silicates, Doct. Tech. Sc. Degree Thesis, Kiev Civil Engineering Institute, Kiev, USSR(1965).
    74.Glukhovsky, V.D., Soild Silicates Articles and Constructions, Gruntosilikatnye virobi I konstruktsiii, Kiev: Budivelnik Publisher(1967).
    75.Sun, W., Zhang, Y.S., Lin, W., Liu, Z.Y., “In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM.”, Cement and Concrete Chemucal Research Vol.34, pp.935-940(2004).
    76.Granizo, M.L., Blanco, M.T., “Alkaline activation of metakaolin.”, Journal of Thermal Analysis 52, pp.957-965(1998).
    77.Palomo, A., Grutzeck, M.W., Blanco, M.T., “Alkali-activated fly ashes- a cement for the future.”, Cement and Concrete Research 29(8), pp.1323-1329 (1999).
    78.Puertas, F., Palomo, A., Fernandez-Jimenez, A., Jzquierdo, J.Z., Granizo, M.L., “Effect of superplasticizer on behavior and properties of alkaline cements.”, Advance in Cement Research 15(1), pp.23-28(2003).
    79.Phair, J.K., Van Deventer, J.S.J., “Effect of silicate activator Ph on the leaching and material characteristics of waste-based inorganic polymers.”, Minerals Engineering Vol. 14 No. 3, pp.289-304(2001).
    80.Kaps, C., Buchwald, A., “Property controlling influences on the generation of geopolymeric based on clay”, Geopolymer 2002 International Conference, Melbourne, Australia(2002).
    81.馬鴻文、凌發科、楊靜、王剛,「利用鉀長石尾礦制備礦物聚合材料的實驗研究」,地球科學-中國地質大學學報第27卷第5期,第576-583頁,北京(2002)。
    82.Zhang, S., Gong, K., Lu, J., “Novel modification method for inorganic geopolymer by using water soluble organic polymers.”, Materials Letters Vol. 58, pp.1292-1296(2004).
    83.闰振甲、何艳君,泡沫混凝土实用生产技术,北京:化学1业出版社(2006)。
    84.Duxson, P., Fernandez-Jimenez A., Provis J.L., Lukey G.C., Palomo, A., Van Deventer J.S.J., “Geopolymer technology: the current state of the art,” Journal of Material Science Vol. 42 No.9, pp.2917-2933(2007).
    85.趙三根、余其俊、喬飛、殷素紅、文梓芸、古國榜,「無機礦粉對鹼激發碳酸鹽凝膠材料性能的影響」,武漢理工大學學報第26卷第7期(2004)。
    86.段瑜芳、王培銘、楊克銳,「鹼激發偏高嶺土凝膠材料水化硬化機理的研究」,新型建築材料(2006)。
    87.黃兆龍,卜作嵐混凝土使用手冊,財團法人中興工程顧問社,台北(2007)。
    88.陳俊村,「矽灰混凝土配比簡化模式建構與其相應工程性質之研究」,博士論文,台灣科技大學(2012)。
    89.鄭榮娟、劉麗娜,「養護溫度對偏高嶺土基地質聚合物凝結硬化性能的影響」,鄭州大學學報(工學版)第28卷第4期(2007)。
    90.鄭大偉,「無機聚合技術的發展應用及回顧」,鑛冶(54/1)(2010)。
    91.張書政、鞏克誠,「地聚合物」,材料科學與工程學報第21卷第3期(2003)。
    92.王玉江、李和平、任和平,「土聚水泥的研究」,硅酸鹽通報第4期(2003)。
    93.Davidovits, J., “Chemistry of geopolymeric systems terminology,” Proceedings of Geopolymere 99 Second International Conference, Institut Géopolymère, Saint-Quentin, France, pp. 9-40(1999).
    94.李克亮、蔣林華、蔡跃波,「土壤聚合物混凝土性能試驗研究」,新型建築材料(2010)。
    95.方禎璋、吳傳威、朱庭賢,「耐高溫無機聚合物交結材料的開發研究」,熱科學與技術第6卷第2期(2007)。
    96.吳佳銘,「含再生綠建材低噪音鋪面績效評估及噪音預測模式建立之研究」,博士論文,台灣科技大學(2007)。
    97.鄭崗、胡江,「偏高嶺土在水泥混凝土中的應用研究現況」,建材發展導向第4期(2010)。

    QR CODE