簡易檢索 / 詳目顯示

研究生: 吳峻維
Jyun-Wei Wu
論文名稱: RC建築基於非彈性分析之柱構件耐震圍束設計研究
Study on Seismic Confinement Design of Column for RC Buildings Based on Inelastic Analyses
指導教授: 林克強
Ker-Chun Lin
口試委員: 林克強
Ker-Chun Lin
邱建國
Chien-Kuo Chiu
簡文郁
Wen-Yu Jean
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 281
中文關鍵詞: 鋼筋混凝土柱韌性容量箍筋配置
外文關鍵詞: RC Column, Deformation Ductility, Transverse Reinforcement Design
相關次數: 點閱:221下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

建築結構中柱構件變形能力與圍束鋼筋配置有很大的影響,一般柱構件設計是以讓柱能夠達到3%側向變形角進行箍筋設計,但由於非彈性動力分析技術之發展,可以經由動力分析方式獲得結構實際受震之變形,如果以此分析下得到之變形量不到3%,則可不需要以3%變形目標對結構物每根柱構件進行圍束鋼筋設計。另外由於近年來高強度鋼筋混凝土材料發展,擬使用於高樓建築之建設,位於高樓結構底層柱由於同時受到高軸力與地震力彎矩作用,使得柱構件在外圍保護層剝落後由於高軸力作用使得主筋挫曲,使柱喪失軸力乘載能力發生破壞,因此本研究為解決上述問題,擬開發一套應用於高樓結構底層柱之系統配置,其將原外側主筋部份移至內側使主筋受束制能持續抵抗軸力不致挫曲,並在一樓梁底增設一半剛接裝置使底部樓層之彎矩呈現雙曲率分布,減少柱底彎矩值。本研究秉持上述理念,並且因台灣部份對於非彈性動力分析之地震歷時調整與選取部份規定仍不明確,因此本研究探討動力分析方法並提出一根據動力分析之結果進行圍束箍筋設計之程序,其由動力分析得知柱構件彎矩需求,並以國內外鋼筋混凝土矩形柱資料庫迴歸分析得知柱側向變形容量與箍筋配置之關係曲線,將兩者結合以進行箍筋設計。以本研究提出之地震歷時縮放法選取地震歷時資料並進行篩選的結果能夠取得較具代表性之地震反應並依據動力歷時分析之結果與回歸資料庫設計之鋼筋量能夠相較原規範配置減少,達到減少鋼筋使用量之優點。另外再改變斷面配置以及增加半剛接裝置之分析上能夠順利進行分析而使底部樓層柱彎矩需求減少。未來期待將此技術運用於實際工程並進行試驗驗證。


The deformability of the column members in the building structure has a great influence on the configuration of the transverse reinforcement. Generally, the design of the column members is to make the column can reach 3% lateral deformation angle for the transverse reinforcement design, but due to the development of inelastic dynamic analysis technology, The actual seismic deformation of the structure is obtained through dynamic analysis. If the deformation obtained under this analysis is less than 3%, there is no need to design each column member of the structure with a 3% deformation target. In addition, due to the development of high-strength reinforced concrete materials in recent years, it is planned to be used in the construction of high-rise buildings. Because the columns located at the bottom of the high-rise structure are simultaneously subjected to high axial force and seismic bending moment, after the clear cover peel off, due to the high Axial force causes the main reinforcement to buckle, causing the column to lose its axial load carrying capacity and cause damage. Therefore, in order to solve the above problems, this research plans to develop a system configuration applied to the bottom column of high-rise structure, which will move the original outer main reinforcement part. To the inner side, the main reinforcement can be restrained to continuously resist the axial force without buckling, and a half-rigid connection device is added at the bottom of the first floor beam to make the bending moment of the bottom floor present a double curvature distribution, reducing the value of the column bottom bending moment. This research adheres to the above-mentioned concept, and because some regulations on the modification and selection of earthquake records for inelastic dynamic analysis in Taiwan are still unclear, this research explores dynamic analysis methods and proposes a design procedure for transverse reinforcement based on the results of dynamic analysis. The program, which obtains the bending moment requirements of column members from dynamic analysis, and obtains the relationship between column lateral deformation capacity and transverse reinforcement by regression analysis of the domestic and foreign reinforced concrete rectangular column test database, and combines the two to perform transverse reinforcement design. Using the earthquake spectra scaling method proposed in this research to select earthquake records and screening the results can obtain a more representative seismic response. Based on the results of dynamic duration analysis and the regression database design, the amount of reinforcement can be reduced compared to the original standard. To achieve the advantage of reducing the amount of steel used. In addition, the analysis of changing the section configuration and adding the semi-rigid connection device can smoothly analyze and reduce the bending moment demand of the bottom floor column. In the future, we look forward to applying this technology to actual projects and conducting tests and verifications.

誌謝 III 摘要 IV ABSTRACT V 目錄 1 表目錄 3 圖目錄 5 第一章 緒論 9 1.1研究動機 9 1.2研究目的 10 1.3研究方法 11 1.4論文架構 11 第二章 文獻回顧 12 2.1鋼筋混凝土柱之設計圍束鋼筋量 12 2.2鋼筋混凝土柱之軸力比與變形容量 13 2.3地震力彈性分析 13 2.3.1臺灣規範 13 2.3.2美國規範 15 2.4地震力非彈性動力歷時分析之加速度歷時調整 15 2.4.1 臺灣規範 15 2.4.2 美國規範 16 2.4.3 地震紀錄之選取與調整 16 2.5鋼筋混凝土結構之構件塑鉸 17 2.5.1 ASCE/SEI 41-13[2] 17 2.5.2 TEASPA[3]塑鉸性能 17 2.6非彈性動力歷時分析變形檢核 18 第三章 鋼筋混凝土矩形柱韌性容量 19 3.1柱構件實驗資料庫建立 19 3.1.1實驗資料篩選 19 3.1.2矩形柱影響韌性之參數選定 19 3.2資料庫數據迴歸分析 20 3.2.1不同韌性指標之迴歸分析 20 3.2.2最佳韌性指標之選定 21 3.2.3柱圍束箍筋設計方式之建立 21 第四章 鋼筋混凝土建築韌性需求分析 23 4.1分析流程 23 4.2鋼筋混凝土建築結構模型建立 23 4.2.1結構設計基本資料 23 4.2.2結構分析基本假設 23 4.3地震力彈性分析與設計 24 4.3.1結構基本動力特性 24 4.3.2設計水平地震力與豎向分配 24 4.3.3構件應力設計 24 4.3.4整體變形檢核與強柱弱梁設計 25 4.3.5柱構件斷面非典型配置之強度探討與設計 25 4.4非彈性靜力側推與動力歷時分析 25 4.4.1靜力側推分析 26 4.4.2動力歷時分析 27 4.4.3地震紀錄之選取與調整建議 28 4.4.4分析結果討論 29 第五章 建築物柱構件之韌性設計分析討論 32 5.1建築物韌性需求之決定 32 5.2 柱構件耐震變形與圍束箍筋需求量 33 5.3柱構件箍筋設計與比較 33 第六章 結論與建議 34 參考文獻 36 附錄一 RC矩形柱測試資料庫 146 附錄二 RC矩形柱迴歸分析 158

[1] ACI Committee 318 (2019), Building Code Requirements for Structural Concrete and Commentary., American Concrete Institute (ACI), Farmington Hills.
[2] ASCE standard ASCE/SEI 41-13, (2013) seismic evaluation and retrofit of existing buildings., American Society of Civil Engineers.
[3] 蕭輔沛、鍾立來、葉勇凱、簡文郁、沈文成、邱聰智、周德光、趙宜峰、翁樸文、楊耀昇、褚有倫、涂耀賢、柴駿甫、黃世建,(2013),「校舍結構耐震評估與補強技術手冊 第三版(NCREE 13-023)」,技術報告NCREE 13-023,國家地震工程研究中心,台北。
[4] Paultre, P., and Légeron, F., (2008), “Confining Reinforcement Design for Reinforced Concrete Columns.” Journal of Structural Engineering, ASCE, V. 134, No. 5, May, pp.738-749.
[5] J. B. Mander, M.J.N. Priestly, and R. Park, (1988), “Theoretical Stress-Strain Model For Confined Concrete,” Journal of Structural Engineering, 114(8), pp. 1804-1826.
[6] Tomomi Suzuki, Lucas Laughery, and Santiago Pujol, (2018), “Learning from the Japanese Experience with High-Strength Longitudinal Reinforcement,” Concrete International, September 2018, pp. 47-58
[7] 內政部營建署,(2011),「建築物耐震設計規範及解說」。
[8] ASCE standard ASCE/SEI 7-16, (2016), Minimum Design Loads and Associated Criteria for Buildings and Other Structures., American Society of Civil Engineers.
[9] 高墀修,(2018),「高樓層鋼結構耐震性能評估與補強方法」,國立中央大學,碩士論文。
[10] FEMA 356, (2000), Prestandard and Commentary for The Seismic Rehabilitation of Buildings., Federal Emergency Management Agency, Washington, D. C.
[11] Elwood, K. J., and Moehle, J. P., (2005), “Axial capacity model for shear damaged columns,” ACI Structural Journal, Vol. 102, No. 4, 578-587.
[12] Elwood, K. J., and Moehle, J. P., (2005), “Drift capacity of reinforced concrete columns with light transverse reinforcement,” Earthquake Spectra, Vol. 21, No. 1, 71-89.
[13] 內政部營建署,(2019),「建築技術規則」
[14] ATC40, (1996), Seismic Evaluation and Retrofit of concrete buildings, Applied Technology Council, Redwood City, California.
[15] 內政部建築研究所,(2005),「建築物耐震性能設計規範之研擬」
[16] Computers & Structures, Inc., (2016), CSI Analysis Reference Manual For SAP2000, ETABS, SAFE and CSiBridge. Berkeley, California, USA, July.
[17] Ang et al. (1981), “Ductility of Reinforced Concrete Bridge Piers Under Seismic Loading.” Master’s thesis, University of Canterbury.
[18] Kevin Allen Riederer (2006), “Assessment of Confinement Models for Reinforced Concrete Columns Subjected to Seismic Loading.” Master’s thesis, The University of British Columbia.
[19] Atalay and Penzien (1975), “The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment, Shear and Axial Force.” Earthquake Engineering Research Center University of California, Berkeley.
[20] Oguzhan Bayrak and Shamim A. Sheikh (1998), “Confinement Reinforcement Design Considerations for Ductile Column,” Journal of Structural Engineering, 124(9), pp.999-1010
[21] Michael Berry and Marc Eberhard (2003), “Performance Models for Flexural Damage in Reinforced Concrete Columns.” Earthquake Engineering Research Center University of California, Berkeley.
[22] Sashi K. Kunnath, (1997), “Cumulative Seismic Damage of Reinforced Concrete Bridge Piers.” United States Department of Commerce Technology Administration National Institute of Standards and Technology, Orlando, Florida.
[23] Frédéric Légeron and Patrick Paultre, (2000). Behavior of High-Strength Concrete Columns under Cyclic Flexure and Constant Axial Load.” ACI Structural Journal, July-August 2000, pp.591-601.
[24] Lehman et al, Jack Moehle, Stephen Mahin, Anthony Calderone, and Lena Henry, (2004), “Experimental Evaluation of the Seismic Performance of Reinforced Concrete Bridge Column,” Journal of Structural Engineering, 2004, 130(6): pp.869-879.
[25] Adolfo Benjamin Matamoros, (1999), “Study of Drift Limits for High-strength Concrete Columns,” Doctoral thesis, University of Illinois.
[26] Y. L. Mo and S. J. Wang, (2000), “Seismic Behavior of RC Columns with Various Tie Configurations,” Journal of Structural Engineering, Oct. 2000, pp.1122-1130.
[27] Ohno and Nishioka (1984), “An Experimental Study on Energy Absorption Capacity of Columns in Reinforced Concrete Structures,” JSCE Structural Eng. Vol 1, No. 2, pp.23-33.
[28] Bing Li (1994), “Strength and Ductility of Reinforced Concrete Members and Frames Constructed Using High Strength Concrete.” Doctoral thesis, University of Canterbury Christchurch, New Zealand.
[29] Shamim A. Sheikh and Shafik S. Khoury (1993), “Confined Concrete Columns with Stubs,” ACI Structural Journal, pp414-431.
[30] Shamim A. Sheikh, Dharmendra V. Shah, and Shafik S. Khoury, (1994), Confinement of High-Strength Concrete Columns. ACI Structural Journal, pp414-431, pp100-111
[31] M. T. Soesianawati (1986), “Limited Ductility Design of Reinforced Concrete Columns.” Master’s thesis, University of Canterbury Christchurch, New Zealand.
[32] Shunsuke Sugano (1996), “Seismic Behavior of Reinforced Concrete Columns Which Used Ultra-high-strength Concrete,” Eleventh World Conference on Earthquake Engineering Proceeding, Paper No.1383.
[33] Watson and R. Park, Fellow (1994), “Simulated Seismic Load Tests on Reinforced Concrete Columns,” Journal of Structural Engineering, 120(6): pp.1825-1849.
[34] Yan Xiao and Armen Martirossyan, (1998), “Seismic Performance of High-strength Concrete Columns,” Journal of Structural Engineering, 124(3): pp.241-251.
[35] Mizoguchi Mitsuo, Arakawa Takashi, Arai Yasuyuki, Yoshida Minoru (1990),“Shear Resisting Behavior of Short Reinforced Concrete Columns under Biaxial Bending-Shear and Varying Axial Load,” Transactions of the Japan Concrete Institute, Vol. 12, pp.347-354.
[36] Abraham Christopher Lynn (1998), “Seismic Evaluation of Existing Reinforced Concrete Building Columns.” Doctoral thesis, California Polytechnic State University, San Luis Obispo.
[37] Kenneth J. Elwood and Marc O. Eberhard (2009), “Effective Stiffness of Reinforced Concrete Columns,” ACI Structural Journal, pp.476-484.
[38] 張豐展,(2010),「高強度鋼筋混凝土圍束效應研究」,碩士論文,國立台灣大學。
[39] 陳盈璋,(2011),「高強度RC柱耐震圍束效應之研究」,碩士論文,國立台灣大學。
[40] 黃冠傑,(2013),「RC柱耐震圍束之研究」,碩士論文,國立台灣大學。
[41] 廖苑儀,(2014),「普通強度RC柱耐震圍束之研究」,碩士論文,國立台灣大學。
[42] 劉澄州,(2014),「預鑄高強度鋼筋混凝土柱雙曲率反覆載重行為」,碩士論文,國立台灣科技大學。
[43] 陳勇亲,(2018),「鋼筋混凝土柱構件之圍束與強度耐震性能提升研究」,碩士論文,國立台灣科技大學。
[44] 劉益彰,(2019),「高層建築兩階段設計法」,碩士論文,國立中央大學。
[45] 吳嘉偉、薛強、張瑜晏,(2010),「SAP2000非線性動態歷時分析模擬預測實尺寸鋼結構建築物崩塌實驗」,中興工程季刊,第108期,7月,pp.15-22。
[46] 李翼安、沈文成、黃世建,(2014),「鋼筋混凝土柱耐震圍束作用之測試」,中國土木水利工程學刊,第四十一卷,第三期,6月,pp.68-73。
[47] 歐昱辰、蔡東均,(2018),「高強度鋼筋混凝土柱之設計」,中國土木水利工程學刊,第三十卷,第三期,pp.223-229。

QR CODE