簡易檢索 / 詳目顯示

研究生: 黃立姍
Li-shan Huang
論文名稱: 利用射頻常壓電漿束改質磷酸鋰鐵材料應用於鋰離子電池之研究
The Investigation of Radio Frequency Atmosphere Pressure Plasma Treated LiFePO4 Cathode Material and the Application on Lithium Ion Battery
指導教授: 郭俞麟
Yu-lin Kuo
王復民
Fu-ming Wang
口試委員: 邱國峰
Kuo-feng Chiu
黃炳照
Bing-joe Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 125
中文關鍵詞: 鋰離子電池正極材料磷酸鋰鐵常壓電漿非晶質核殼包覆
外文關鍵詞: Lithium-ion batteries, cathode material, lithium iron phosphate, Atmospheric Pressure Plasma Jet, amorphous core-shell coating
相關次數: 點閱:431下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

因應節能減碳的政策,電動車發展逐漸被全球各國重視,且需求量愈見增加,而鋰離子電池由於能量密度高之原因常被考慮用於電動車之儲能,磷酸鋰鐵 (LiFePO4)正極材料是常見運用於電動車之正極材料,但由於其導電度及高溫性能仍有待改善之空間,因此目前仍是研究的重點。本論文研究目的為利用常壓射頻電漿對LiFePO4正極進行表面改質,藉由親水官能基接枝於正極表面,而後形成非晶質相含碳化合物來達成提升在高溫下對磷酸鋰鐵正極材料之保護,避免Fe離子自結構中釋出以改善電容量衰退之情形。
由OES電漿物種分析結果得知電漿內部物種有許多氫氧官能基及Ar物種。在水接觸角實驗結果顯示,LiFePO4電極於水接觸角角度為未處理(original)>常壓射頻電漿改質掃描次數3次(PA3)>常壓射頻電漿改質掃描次數10次(PA10)>常壓射頻電漿改質掃描次數次(PA6)。經過常壓電漿改質次數6次的試片(PA6),具有最親水之水接觸角角度。從Raman分析中可得知,此電極的石墨化比例些微下降,故確認常壓射頻電漿處理6次的LiFePO4具有較多之親水官能基之接枝於正極表面。在高溫充放電後之TEM影像顯示,經過常壓射頻電漿改質6次之LiFePO4顆粒外表層,具有明顯的非晶相之含碳化合物形成,因此常壓射頻電漿成功改質LiFePO4正極以達保護效果,從高溫電性測試結果得知,在電容量之提升首圈放電電容量:original,161.4 mAh/g;PA6,165.9mAh/g及經高溫充放電35迴圈電容量:original,149.7 mAh/g;PA6,158.6mAh/g,衰退率為: original,7.24%;PA6,4.40%,本研究確實有效改善鋰離子電池於高溫下之電池性能。


The development of electric vehicle (EV) attracts lots of attention in the world owing to the criterions of energy conservation and carbon emission reduction. Lithium ion battery is used to consider an storage on EV because of its high energy density. LiFePO4 is one of the most popular cathode materials that applies to EV regarding several advantages, such as the low price, long cycle life, environmental safety and high specific energy, respectively. However, LiFePO4 is limited to its application on EV according to the low electric conductivity, which is around 10-9 Scm-1 compares to the LiCoO2 (10-3 Scm-1) and LiMn2O4 (10-5 Scm-1) at room temperature and low cycle ability at high temperature. In order to beyond those drawbacks, many efforts have been made to improve the electrochemical performance at high temperature and the electric conductivity of bulk material.
This research is demonstrates the LiFePO4 is treated by Atmospheric Pressure Plasma Jet (APPJ). TEM shows the APPJ surface modification generates a core-shell structure of LiFePO4, which the shell presents an amorphous layer. The shell is produced by the APPJ treatment via plasma-induced grafting hydrophilic functional groups. The contact angle measurement optical emission spectroscopy analysis and high temperature electrochemical test show that the core-shell structure of LiFePO4 can enhance the cycle life, discharge capacity and avoid Fe ion released from the structure at high temperature (55℃).

摘要 I ABSTRACT II 致謝 III 目錄 IV 圖索引 VII 表索引 XII 第一章 緒 論 1 1.1. 前言 1 第二章 文獻回顧 5 2.1. 鋰離子二次電池發展 5 2.1.1. 鋰離子二次電池工作原理 6 2.1.2. 陽極(負極)材料 8 2.1.3. 電解質 9 2.1.4. 陰極(正極)材料 11 2.1.5. 常見鋰電池在高溫產生之問題 14 2.1.6. 常見鋰電池在高溫產生問題之解決方法 18 2.1.6.1. 正極材料之改善方法 18 2.1.6.2. 電解質之改善方法 19 2.1.6.3. 負極材料之改善方法 19 2.1.6.4. 電池保護 20 2.2. 電漿簡介 21 2.2.1. 電漿工作原理 26 2.3. 研究動機與目的 32 第三章 實驗方法和儀器設備 33 3.1. 儀器設備 33 3.2. 實驗藥品 34 3.3. 實驗程序 35 3.3.1. 常壓電漿改質正極方法 36 3.3.2. 常壓射頻電漿系統 36 3.3.3. 鈕扣型電池組裝方法 37 3.3.4. 取出電極試驗方法 39 3.4. 材料鑑定與分析方法 39 3.4.1. X光繞射儀 (X-ray Diffraction Spectrometer, XRD) 39 3.4.2. 能量散射光譜儀 (Energy Dispersive Spectrometer, EDS) 40 3.4.3. 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy, FESEM)40 3.4.4. 拉曼光譜儀 (Raman Spectrometer) 40 3.4.5. 場發射穿透式電子顯微鏡 (Field Emission Electron Microscope,TEM) 41 3.4.6. 光學放射光譜儀 (Optical Emission Spectroscopy, OES) 41 3.4.7. Contact Angle 接觸角量測 42 3.4.8. 表面積及孔洞大小分布分析 (Brunauer-Emmett-Teller, BET) 43 3.4.9. 傅立葉轉換紅外光譜儀 (Fourier Transform infrared spectroscopy, FTIR) 44 3.5. 鈕扣型電池充放電測試分析 49 3.6. 電漿溫度量測 49 第四章 實驗結果與討論 50 4.1. 電漿內部物種及溫度量測分析(OES分析/電漿溫度量測) 51 4.2. 接觸角量測分析 54 4.3. 常壓射頻電漿改質對正極充放電前後影響分析 57 4.3.1. XRD 57 4.3.1.1. 充放電前結果分析 57 4.3.1.2. 高溫充放電後結果分析 57 4.3.2. BET 67 4.3.3. FTIR 70 4.3.4. Raman 74 4.3.5. SEM 78 4.3.5.1. 充放電前結果分析 78 4.3.5.2. 高溫充放電後結果分析 78 4.3.6. TEM 82 4.3.6.1. 原始未經改質正極之TEM影像結果分析 82 4.3.6.2. 常壓射頻電漿改質6次正極之TEM影像結果分析 82 4.4. 電化學測試分析 89 4.4.1. 常溫充放電池性能測試 89 4.4.2. 高溫充放電池性能測試 95 4.4.3. 高溫充放電循環性能分析 96 第五章 結論 98 第六章 未來展望 100 參考文獻 101

[1] 柯賢文, "鋰電池," 科學發展, vol. 482, pp. 50-59, 2013.
[2] 車訊網. (2013). 台灣首輛認證通過 立凱電新一代8.3米換電式純電動巴士問世. Available: http://www.carnews.com/article.php?id=31577
[3] 盧佛青. (2007). MATRA MS-1電動機車在2007年巴黎國際機車展首度發表. Available: http://mobile.autonet.com.tw/cgi-bin/file_view.cgi?a7100027071002
[4] R. LLEWELLYN. (2013). TESLA MODEL S CAR-FUFFLE. Available:http://llewblog.squarespace.com/journal/2013/2/13/tesla-model-s-car-fuffle.html
[5] 李文雄, "鋰電池 E世代的能源," 科學發展, vol. 362, pp. 32-35, 2003.
[6] 陳俊佑, "鋰電池陰極材料表面修飾對其電池性能增進機制之探討," 碩士, 化學工程系, 國立臺灣科技大學, 台北市, 2006.
[7] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, "Challenges in the development of advanced Li-ion batteries: a review," Energy & Environmental Science, vol. 4, pp. 3243-3262, 2011.
[8] J. Hajek., French Patent, 1994.
[9] M. Armand. Doctoral Thesis, Inst. National Polytech. de Grenoble, 1978.
[10] M. Armand, J. M. Chabagno, and M. Duclot, in Second International Meeting on Solid Electrolyte, 1978.
[11] 黃可龍, 王兆翔, 劉素琴, 鋰離子電池原理與技術. 台灣: 五南圖書, 2010.
[12] 許智超, "以嵌入介孔碳材之LiFePO4為鋰離子電池陰極材料之研究," 碩士, 化學工程系, 國立臺灣科技大學, 台北市, 2008.
[13] 蔡孟宏, "o-LiMnO2和LiMn1-xMxO2(M=Cr,Fe,Al,Mg)正極材料的製備及特性研究," 碩士, 材料工程學系(所), 大同大學, 台北市, 2007.
[14] D. W. Murphy, "Preparation and Characterization of o-LiMnO2 and LiMn1-xMxO2 Materials (M=Cr, Fe, Al, Mg)," Materials Research Bulletin, vol. 13, p. 1395, 1978.
[15] 陳保源, "LiFePO4/C薄膜正極之電感耦合氬/氫混合電漿製程開發," 碩士, 材料科學所, 逢甲大學, 台中市, 2007.
[16] M. Zanini, Basu, S., Fischer, J.E., "alternate synthesis and reflectivity spectrum of stage 1 lithium-graphite intercalation compound," Carbon, vol. 16, pp. 211-212, 1978.
[17] 洪俊睿, 謝登存, 劉禮綸, 葉勝發, "40Ah大型高能量密度鋰電池研發與技術展現," Industrial Materials, vol. 315, pp. 76-83, 2013.
[18] H. B. Armand, S. M. Chabagno, and M. Dulcot, presented at the Second International Meeting on Solid Electrolyte, Scotland, 1978.
[19] F. M. Gray, Solid Polymer Electrolyte: fundamentals and technological applications, 1997.
[20] O. Bohnke, C. Rousselot, P. A. Gillet, and C. Truche, "Gel electrolyte for solid-state electrochromic cell," Journal of the Electrochemical Society, vol. 139, pp. 1862-1865, 1992.
[21] F. Croce, S. D. Brown, S. G. Greenbaum, S. M. Slane, and M. Salomon, "Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on polyacrylonitrile," Chemistry of Materials, vol. 5, pp. 1268-1272, 1993.
[22] P. E. Stallworth, J. Li, S. G. Greenbaum, F. Croce, S. Slane, and M. Salomon, "Sodium-23 NMR and complex impedance studies of gel electrolytes based on poly (acrylonitrile)," Solid State Ionics, vol. 73, pp. 119-126, 1994.
[23] P. E. Stallworth, S. G. Greenbaum, F. Croce, S. Slane, and M. Salomon, "Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(methylmethacrylate)," Electrochimica Acta, vol. 40, pp. 2137-2141, 1995.
[24] 陳羿廷, 陳玉惠, "高分子電解質在鋰二次電池上之應用研究現況," Chemistry of Materials, vol. 62, pp. 445-454, 2004.
[25] Q. Wang, J. Sun, X. Yao, and C. Chen, "Thermal stability of LiPF6/EC+DEC electrolyte with charged electrodes for lithium ion batteries," Thermochimica Acta, vol. 437, pp. 12-16, 2005.
[26] 劉泓杰, "鋰離子二次電池商用正極材料缺陷鑑定," 碩士, 化學工程系, 國立臺灣科技大學, 台北市, 2013.
[27] X. Ji, K. T. Lee, and L. F. Nazar, "A highly ordered nanostructured carbon--sulphur cathode for lithium--sulphur batteries," Nature Materials, vol. 8, pp. 500-506, 2009.
[28] B. L. Ellis, K. T. Lee, and L. F. Nazar, "Positive electrode materials for Li-Ion and Li-batteries," Chemistry of Materials, vol. 22, pp. 691-714, 2010.
[29] J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, and A. Kojic, "A Critical Review of Li/Air Batteries," Journal of The Electrochemical Society, vol. 159, pp. R1-R30, 2011.
[30] 廖國宏, "磷酸鐵鋰陰極材料研究," 碩士, 應用化學系, 國立暨南國際大學, 南投縣, 2004.
[31] Y. Takeda, K. Nakahara, M. Nishijima, N. Imanashi, O. Yamamoto, M. Takano, and R. Kanno, Materials Research Bulletin, vol. 29, p. 659, 1994.
[32] A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho-olivines as positive-electrode materials for rechargeable lithium batteries," Journal of the Electrochemical Society, vol. 144, pp. 1188-1194, 1997.
[33] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. B. Goodenough, "Effect of Structure on the Fe3 +  / Fe2 +  Redox Couple in Iron Phosphates," Journal of The Electrochemical Society, vol. 144, pp. 1609-1613, 1997.
[34] A. S. Andersson, B. Kalska, P. Eyob, D. Aernout, L. Ha‥ggstro‥m, and J. O. Thomas, "Lithium insertion into rhombohedral Li3Fe2(PO4)3," Solid State Ionics, vol. 140, pp. 63-70, 2001.
[35] G. C. Kuczynski, Trans. Am. Inst. Min. (Metall.) Eng, vol. 185, p. 169, 1949.
[36] S. Y. Chung, J. T. Bloking, and Y. M. Chiang, Nature Materials, vol. 1, p. 123, 2002.
[37] L. Wang, G. C. Liang, X. Q. Ou, X. K. Zhi, J. P. Zhang, and J. Y. Cui, "Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction," Journal of Power Sources, vol. 189, pp. 423-428, 2009.
[38] S.-Y. Chung and Y.-M. Chiang, "Microscale Measurements of the Electrical Conductivity of Doped LiFePO4," Electrochemical and Solid-State Letters, vol. 6, p. A278, 2003.
[39] Y. Kadoma, J.-M. Kim, K. Abiko, K. Ohtsuki, K. Ui, and N. Kumagai, "Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose," Electrochimica Acta, vol. 55, pp. 1034-1041, 2010.
[40] Y. Lin, M. X. Gao, D. Zhu, Y. F. Liu, and H. G. Pan, "Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C," Journal of Power Sources, vol. 184, pp. 444-448, 2008.
[41] A. Fedorkova, R. Oriňakova, A. Oriňak, I. Talian, A. Heile, H.-D. Wiemhofer, D. Kaniansky, and H.F. Arlinghaus, "PPy doped PEG conducting polymer films synthesized on LiFePO4 particles," Journal of Power Sources, vol. 195, pp. 3907-3912, 2010.
[42] J. Chen, L. Yan, and B. Yue, "Nano-layered LiFePO4 particles converted from nano-layered ferrous phenylphosphonate templates," Journal of Power Sources, vol. 209, pp. 7-14, 2012.
[43] H.-S. Kim, D.-W. Kam, W.-S. Kim, and H.-J. Koo, "Synthesis of the LiFePO4 by a solid-state reaction using organic acids as a reducing agent," Ionics, vol. 17, pp. 293-297, 2011.
[44] L. Dimesso, C. Spanheimer, S. Jacke, and W. Jaegermann, "Synthesis and characterization of LiFePO4/3-dimensional carbon nanostructure composites as possible cathode materials for Li-ion batteries," Ionics, vol. 17, pp. 429-435, 2011.
[45] Z.-H. Wang, L.-X. Yuan, W.-X. Zhang, and Y.-H. Huang, "LiFe0.8Mn0.2PO4/C cathode material with high energy density for lithium-ion batteries," Journal of Alloys and Compounds, vol. 532, pp. 25-30, 2012.
[46] S. Zheng, X. Wang, X. Huang, and C. Liu, "Hydrothermal synthesis of Ni-doped carom-like LiFe0.95Ni0.05PO4 powders," Ceramics International, vol. 38, pp. 4391-4394, 2012.
[47] L. Wu, Z.-X. Wang, X.-H. Li, L.-J. Li, H.-J. Guo, J.-C. Zheng, and X.-J. Wang, "Electrochemical performance of Ti4+-doped LiFePO4 synthesized by co-precipitation and post-sintering method," Transactions of Nonferrous Metals Society of China, vol. 20, pp. 814-818, 2010.
[48] S. Y. Chung, J. T. Bloking, and Y. M. Chiang, "Electronically conductive phospho-olivines as lithium storage electrodes," Nature Materials, vol. 1, pp. 123-8, 2002.
[49] F. Pan and W.-l. Wang, "Synthesis and characterization of core–shell F-doped LiFePO4/C composite for lithium-ion batteries," Journal of Solid State Electrochemistry, vol. 16, pp. 1423-1427, 2011.
[50] Q.-Q. Zou, G.-N. Zhu, and Y.-Y. Xia, "Preparation of carbon-coated LiFe0.2Mn0.8PO4 cathode material and its application in a novel battery with Li4Ti5O12 anode," Journal of Power Sources, vol. 206, pp. 222-229, 2012.
[51] J. Wang, Z. Shao, and H. Ru, "Influence of carbon sources on LiFePO4/C composites synthesized by the high-temperature high-energy ball milling method," Ceramics International, vol. 40, pp. 6979-6985, 2014.
[52] S. J. Kwon, C. W. Kim, W. T. Jeong, and K. S. Lee, "Synthesis and electrochemical properties of olivine LiFePO4 as a cathode material prepared by mechanical alloying," Journal of Power Sources, vol. 137, pp. 93-99, 2004.
[53] S. Luo, Z. Tang, J. Lu, and Z. Zhang, "Electrochemical properties of carbon-mixed LiFePO4 cathode material synthesized by the ceramic granulation method," Ceramics International, vol. 34, pp. 1349-1351, 2008.
[54] M. Konarova and I. Taniguchi, "Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries," Journal of Power Sources, vol. 195, pp. 3661-3667, 2010.
[55] J. Li, T. Suzuki, K. Naga, Y. Ohzawa, and T. Nakajima, "Electrochemical performance of LiFePO4 modified by pressure-pulsed chemical vapor infiltration in lithium-ion batteries," Materials Science and Engineering: B, vol. 142, pp. 86-92, 2007.
[56] T. Nagakane, H. Yamauchi, K. Yuki, M. Ohji, A. Sakamoto, T. Komatsu, T. Honma, M. Zou, G. Park, and T. Sakai, "Glass-ceramic LiFePO4 for lithium-ion rechargeable battery," Solid State Ionics, vol. 206, pp. 78-83, 2012.
[57] F. Simmen, M. Horisberger, B. Seyfang, T. Lippert, P. Novak, M. Dobeli, M. Mallepell, C. W. Schneider, and A. Wokaun, "Glassy carbon - A promising substrate material for pulsed laser deposition of thin Li1+xMn2O4-δ electrodes," Applied Surface Science, vol. 257, pp. 5347-5353, 2011.
[58] J. Li, C. Rulison, J. Kiggans, C. Daniel, and D. L. Wood, "Superior Performance of LiFePO4 Aqueous Dispersions via Corona Treatment and Surface Energy Optimization," Journal of the Electrochemical Society, vol. 159, pp. A1152-A1157, 2012.
[59] Y.-D. Li, S.-X. Zhao, C.-W. Nan, and B.-H. Li, "Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery," Journal of Alloys and Compounds, vol. 509, pp. 957-960, 2011.
[60] C.-T. Hsieh, C.-T. Pai, Y.-F. Chen, P.-Y. Yu, and R.-S. Juang, "Electrochemical performance of lithium iron phosphate cathodes at various temperatures," Electrochimica Acta, vol. 115, pp. 96-102, 2014.
[61] L. Bodenes, R. Naturel, H. Martinez, R. Dedryvere, M. Menetrier, L. Croguennec, J.-P. Peres, C. Tessier, and F. Fischer, "Lithium secondary batteries working at very high temperature: Capacity fade and understanding of aging mechanisms," Journal of Power Sources, vol. 236, pp. 265-275, 2013.
[62] K. Amine, J. Liu, and I. Belharouak, "High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells," Electrochemistry Communications, vol. 7, pp. 669-673, 2005.
[63] L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, "A review on the key issues for lithium-ion battery management in electric vehicles," Journal of Power Sources, vol. 226, pp. 272-288, 2013.
[64] M. Gaberscek, R. Dominko, M. Bele, M. Remskar, D. Hanzel, and J. Jamnik, "Porous, carbon-decorated LiFePO4 prepared by sol–gel method based on citric acid," Solid State Ionics, vol. 176, pp. 1801-1805, 2005.
[65] Y. Xia, M. Yoshio, and H. Noguchi, "Improved electrochemical performance of LiFePO4 by increasing its specific surface area," Electrochimica Acta, vol. 52, pp. 240-245, 2006.
[66] K. Araki and N. Sato, "Chemical transformation of the electrode surface of lithium-ion battery after storing at high temperature," Journal of Power Sources, vol. 124, pp. 124-132, 2003.
[67] H.-C. Wu, C.-Y. Su, D.-T. Shieh, M.-H. Yang, and N.-L. Wu, "Enhanced High-Temperature Cycle Life of LiFePO4-Based Li-Ion Batteries by Vinylene Carbonate as Electrolyte Additive," Electrochemical and Solid-State Letters, vol. 9, p. A537, 2006.
[68] H.-H. Chang, H.-C. Wu, and N.-L. Wu, "Enhanced high-temperature cycle performance of LiFePO4/carbon batteries by an ion-sieving metal coating on negative electrode," Electrochemistry Communications, vol. 10, pp. 1823-1826, 2008.
[69] J. Cao, D. Gao, J. Liu, J. Wei, and Q. Lu, "Thermal modeling of passive thermal management system with phase change material for LiFePO4 battery," in Vehicle Power and Propulsion Conference (VPPC), 2012, pp. 436-440.
[70] A. Agbossou, Q. Zhang, G. Sebald, and D. Guyomar, "Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I: Theoretical analysis," Sensors and Actuators A: Physical, vol. 163, pp. 277-283, 2010.
[71] L. Xia, P. Zhang, and R. Z. Wang, "Preparation and thermal characterization of expanded graphite/paraffin composite phase change material," Carbon, vol. 48, pp. 2538-2548, 2010.
[72] A. Alrashdan, A. T. Mayyas, and S. Al-Hallaj, "Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs," Journal of Materials Processing Technology, vol. 210, pp. 174-179, 2010.
[73] S. A. Khateeb, M. M. Farid, J. R. Selman, and S. Al-Hallaj, "Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter," Journal of Power Sources, vol. 128, pp. 292-307, 2004.
[74] R. Sabbah, R. Kizilel, J. R. Selman, and S. Al-Hallaj, "Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution," Journal of Power Sources, vol. 182, pp. 630-638, 2008.
[75] R. Kizilel, A. Lateef, R. Sabbah, M. M. Farid, J. R. Selman, and S. Al-Hallaj, "Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature," Journal of Power Sources, vol. 183, pp. 370-375, 2008.
[76] S. A. Khateeb, S. Amiruddin, M. Farid, J. R. Selman, and S. Al-Hallaj, "Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation," Journal of Power Sources, vol. 142, pp. 345-353, 2005.
[77] R. A. Wolf, Atomospheric Pressure Plasma for Surface Modification: John Wiley & Sons, 2013.
[78] 張家豪, 魏鴻文, 翁政輝, 柳克強, 吳敏文, 曾錦清, 蔡文發, 鄭國川, "電漿源原理與應用之介紹," 物理雙月刊, vol. 38, pp. 440-451, 2006.
[79] 洪昭南, 徐逸明, 游閔盛, 郭有斌, 黃傑. 常壓電漿原理、技術與應用. Available:http://www.creating-nanotech.com/big5/get_file.php?list=download&path=20110520145713437.pdf
[80] 羅萬中, 林昭憲, 高于迦, 蔣啟明, 電機月刊, vol. 17, pp. 140-149, 2007.
[81] Y.-L. Kuo, K.-H. Chang, T.-S. Hung, K.-S. Chen, and N. Inagaki, "Atmospheric-pressure plasma treatment on polystyrene for the photo-induced grafting polymerization of N-isopropylacrylamide," Thin Solid Films, vol. 518, pp. 7568-7573, 2010.
[82] N. Inagaki, Plasma surface modification and plasma polymerization: Technomic Publishing, 1996.
[83] R. E. Belford and S. Sood, "Surface Activation Using Remote Plasma for Hydrophilic Bonding at Elevated Temperature," Electrochemical and Solid-State Letters, vol. 10, p. H145, 2007.
[84] Colman and R. W, "Surface-mediated Defense Reactions The Plasma Contact Activation System," Journal of Clinical Investigation, vol. 73, pp. 1249-1253, 1984.
[85] K. Johnsen, S. Kirkhorn, K. Olafsen, K. Redford, and A. Stori, "Modification of polyolefin surfaces by plasma-induced grafting," Journal of Applied Polymer Science, vol. 59, pp. 1651-1657, 1996.
[86] 周鴻哲, "利用石英晶體微天秤發展細胞檢測平台," 博士, 生物工程學系(所), 大同大學, 台北市, 2009.
[87] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, pp. 2-30, 2006.
[88] 張家瑜, "以常壓電漿噴射束製備氧化釓摻雜氧化鈰固態電解質材料," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2013.
[89] D. Merche, N. Vandencasteele, and F. Reniers, "Atmospheric plasmas for thin film deposition: A critical review," Thin Solid Films, vol. 520, pp. 4219-4236, 2012.
[90] A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, "Gas discharge plasmas and their applications," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 57, pp. 609-658, 2002.
[91] 楊士賢, "以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究," 碩士, 化學工程研究所, 中原大學, 桃園縣, 2005.
[92] 劉志宏, 黃駿, 許文通, 蔡禎輝, 張所鋐, "以大氣電漿進行材料表面微米級圖案化之加工技術," 機械工業雜誌, vol. 306, 2008.
[93] 劉志宏, "應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究," 博士, 化學工程研究所, 中原大學, 桃園縣, 2005.
[94] 陳志洋. (2013) 歐洲電動二輪車市場發展概況. 工業材料.
[95] 賴亭吟, "利用液滴形狀分析量測固-液接觸角," 碩士, 化學工程所, 國立中正大學, 嘉義縣, 2007.
[96] 曾祥慶, "超疏水表面利用壓板法量測接觸角的遲滯現象與超疏水表面因缺陷存在造成水珠停滯不前的現象," 碩士, 化學工程與材料工程研究所, 國立中央大學, 桃園縣, 2011.
[97] T. Kang. FTIR Technology Introduction. Available:www.slvs.tc.edu.tw/125/20120919020307.ppt
[98] 程品皓, "鋰離子電池添加劑之開發," 碩士, 化學工程系, 國立臺灣科技大學, 台北市, 2013.
[99] G. Trelane. (2007). INFRARED SPECTROSCOPY. Available:http://www.biomaterial.com.br/FTIR.pdf
[100] N. Glagovich. (2005). Infrared Spectroscopy.
[101] X. L. Deng, A. Y. Nikiforov, P. Vanraes, and C. Leys, "Direct current plasma jet at atmospheric pressure operating in nitrogen and air," Journal of Applied Physics, vol. 113, pp. 023305 1-9, 2013.
[102] R. E. Walkup, K. L. Saenger, and G. S. Selwyn, "Studies of atomic oxygen in O2+CF4 rf discharges by two‐photon laser‐induced fluorescence and optical emission spectroscopy," The Journal of Chemical Physics, vol. 84, pp. 2668-2674, 1986.
[103] S. Behle, A. Georg, Y. Yuan, J. Engemann, and A. Brockhaus, "Imaging of atomic oxygen in a microwave excited oxygen plasma with two-dimensional optical emission spectroscopy," Surface and Coatings Technology, vol. 97, pp. 734-741, 1997.
[104] R. X. Wang, W. F. Nian, H. Y. Wu, H. Q. Feng, K. Zhang, J. Zhang, W. D. Zhu, K. H. Becker, and J. Fang, "Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation," The European Physical Journal D, vol. 66, pp. 1-7, 2012.
[105] T. Shirafuji, J. Hieda, O. Takai, N. Saito, T. Morita, O. Sakai, and K. Tachibana, "FTIR study of methylene blue plasma degradation products through plasma treatment on water," in Institute of Electrical and Electronics Engineers, Fukuoka, Japan, 2010, pp. 1938-1942.
[106] R. Malik, F. Zhou, and G. Ceder, "Kinetics of non-equilibrium lithium incorporation in LiFePO4," Nature Materials, vol. 10, pp. 587-590, 2011.
[107] Y. Tian, Y. He, and J. Zhang, "Vibrational spectroscopic study of phase segregation in off-stoichiometric LiFePO4-based cathode materials," ECS Electrochemistry Letters, vol. 1, pp. A4-A6, 2012.
[108] C. M. Burba and R. Frech, "In situ transmission FTIR spectroelectrochemistry: A new technique for studying lithium batteries," Electrochimica Acta, vol. 52, pp. 780-785, 2006.
[109] Y.-K. Choi, K.-i. Chung, W.-S. Kim, Y.-E. Sung, and S.-M. Park, "Suppressive effect of Li2CO3 on initial irreversibility at carbon anode in Li-ion batteries," Journal of power sources, vol. 104, pp. 132-139, 2002.
[110] A. S. Cavanagh, Y. Lee, B. Yoon, and S. George, "Atomic Layer Deposition of LiOH and Li2CO3 Using Lithium t-Butoxide as the Lithium Source," ECS Transactions, vol. 33, pp. 223-229, 2010.
[111] Y.-G. Huang, F.-H. Zheng, X.-H. Zhang, Q.-Y. Li, and H.-Q. Wang, "Effect of carbon coating on cycle performance of LiFePO4/C composite cathodes using Tween80 as carbon source," Electrochimica Acta, vol. 130, pp. 740-747, 2014.
[112] C. M. Julien, K. Zaghib, A. Mauger, M. Massot, A. Ait-Salah, M. Selmane, and F. Gendron, "Characterization of the carbon coating onto LiFePO4 particles used in lithium batteries," Journal of Applied Physics, vol. 100, 2006.
[113] W. Dreyer, J. Jamnik, C. Guhlke, R. Huth, J. Moskon, and M. Gaberscek, "The thermodynamic origin of hysteresis in insertion batteries," Nature Materials, vol. 9, pp. 448-453, 2010.

QR CODE