簡易檢索 / 詳目顯示

研究生: Okta Pianti Rahayu
Okta Pianti Rahayu
論文名稱: 溶劑對偶聯劑合成的影響及其在電化學免疫傳感器CA125檢測中的應用
An Investigation of Solvent Effect on The Synthesis Of Coupling Agent and Its Application To The CA125 Detection of Electrochemical Immunosensor
指導教授: 郭俞麟
Yu-Lin Kuo
王復民
Fu-Ming Wang
口試委員: 郭俞麟
王復民
白孟宜
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 66
中文關鍵詞: rGOCA125乙醇甲苯APTES
外文關鍵詞: Electrochemical Immunosensors
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Ovarian cancer cases keep increasing and become one of the most lethal cases worldwide. The detection of ovarian cancer usually after the main symptoms appeared and the person will be diagnosed with a high level of ovarian cancer afterward. In this case, the early detection of malignancy is needed in the treatment of ovarian cancer. Herein, we report on the development of an electrochemical immunosensor for the early detection of carcinoma antigen 125 (CA125). The graphene oxide was firstly synthesized with APTES, the APTES was the silanization agent which could functionalize the rGO. APTES was grafted to rGO through synthesis process, the process was using two different solvents; Ethanol and Toluene. APTES could cross-link in solution and that cross-linked layer could grafted the surface of rGO. The best solvent was one where hydrolysis and self-condensation do not occur. Consecutively, it was conjugated with anti - CA125 monoclonal antibody (Ab) using an intermolecular crosslinking reaction. The nonspecfic binding sites were followed by enclosed wtih bovine serum albumin (BSA). Differential pulse voltammetry was used to investigate the electrochemical properties of the developed BSA/Ab/rGO@APTES-SA/Thi immunosensor. The electrochemical immunosensor offers a good response for the detection of CA125 antigen with a linear range (5x10-5 - 0.033 µg/mL). The sensor that used rGO@APTES-SA by Ethanol not really sensitive to detect CA125 due to the condensation happened in ethanol which affecting the performance of surface functionalization. Whereas in toluene, APTES condensation reaction was not significant, allowed a greater availability of APTES molecules to react with the rGO, resulted in a more efficient functionalization. Based on the simple synthesis process of rGO and high sensitivity of the developed immunosensor, the developed immunosensor will provide a sensitive, convenient approach to be used for detection of CA125 antigen or even the early detection and treatment of ovarian cancer (OC).

    Abstract ii TABLE OF CONTENTS iii LIST OF PICTURES v CHAPTER 1 1 INTRODUCTION 1 CHAPTER II 4 LITERATURE REVIEW 4 2.1 Ovarian cancer 4 2.1.1 Geographical statistics 6 2.1.2 Pathology classification of OC 7 2.1.3 Tumor Marker of Ovarian Cancer 10 2.2 Immunoassay 11 2.2.1 Immunoassay Sandwich ELISA 12 2.3 Biosensor 13 2.3.1 Classifications of Biosensor 14 2.3.2 Electrochemical Biosensor 15 2.4 Carbon Black 16 2.5 Graphene 17 2.6 Thionine 19 2.7 APTES 20 2.8 Succinic Anhydride 24 2.9 Research Motivation 25 CHAPTER III 26 EXPERIMENTAL PROCEDURE 26 3.1. Materials and reagents 26 3.2. Instruments 27 3.3. Experimental procedures 27 3.3.1 Preparation of rGO@APTES-SA 27 3.3.2 Preparation of 1st and 2nd layer solution 28 3.3.3 Preparation flow of synthesized rGO 29 3.3.4 Differential Pulse Voltammetry (DPV) 32 3.3.5 Electrochemical measurement 34 3.3.6 TGA 35 3.3.7 SEM 36 CHAPTER IV 38 RESULTS AND DISCUSSION 38 4.1 The effect of carbon support 38 4.1.1 Effect of graphene modification on electrochemical responses 38 4.1.2 Effect of graphene functionalized by APTES-SA on electrochemical responses 39 4.2 Comparison of carbon materials by SEM 42 4.3 Evaluation after testing with Different concentration of CA125 43 4.4 Trial with serum with/without Ovarian Cancer (OC) 45 CHAPTER V 51 CONCLUSION AND FUTURE WORKS 51 REFERENCES 53

    1. Cusimano MC, Ferguson SE, Moineddin R, Chiu M, Aktar S, Liu N, et al. Ovarian cancer incidence and death in average-risk women undergoing bilateral salpingo-oophorectomy at benign hysterectomy. In: American Journal of Obstetrics and Gynecology. Elsevier Inc.; 2022. p. 220.e1-220.e26.
    2. Brewster WR, Burkett WC, Ko EM, Bae-Jump V, Nicole McCoy A, Keku TO. An evaluation of the microbiota of the upper reproductive tract of women with and without epithelial ovarian cancer. Gynecol Oncol Rep. 2022 Aug;42:101017.
    3. Lin S, Wang Y, Peng Z, Chen Z, Hu F. Detection of cancer biomarkers CA125 and CA199 via terahertz metasurface immunosensor. Talanta. 2022 Oct 1;248.
    4. Montagnana M, Benati M, Danese E. Circulating biomarkers in epithelial ovarian cancer diagnosis: From present to future perspective. Vol. 5, Annals of Translational Medicine. AME Publishing Company; 2017.
    5. Thévenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: Recommended definitions and classification. Vol. 34, Analytical Letters. 2001. p. 635–59.
    6. Hasan MR, Ahommed MS, Daizy M, Bacchu MS, Ali MR, Al-Mamun MR, et al. Recent development in electrochemical biosensors for cancer biomarkers detection. Vol. 8, Biosensors and Bioelectronics: X. Elsevier Ltd; 2021.
    7. Kumar SSA, Bashir S, Ramesh K, Ramesh S. New perspectives on Graphene/Graphene oxide based polymer nanocomposites for corrosion applications: The relevance of the Graphene/Polymer barrier coatings. Vol. 154, Progress in Organic Coatings. Elsevier B.V.; 2021.
    8. Tadyszak K, Wychowaniec JK, Litowczenko J. Biomedical applications of graphene-based structures. Vol. 8, Nanomaterials. MDPI AG; 2018.
    9. McCoy TM, Turpin G, Teo BM, Tabor RF. Graphene oxide: a surfactant or particle? Vol. 39, Current Opinion in Colloid and Interface Science. Elsevier Ltd; 2019. p. 98–109.
    10. Singh S, Hasan MohdR, Sharma P, Narang J. Graphene nanomaterials: The wondering material from synthesis to applications. Sensors International. 2022 Jun;100190.
    11. Zhang Z, Yu Y, Xu F, Berchuck A, van Haaften-Day C, Havrilesky LJ, et al. Combining multiple serum tumor markers improves detection of stage I epithelial ovarian cancer. Gynecol Oncol. 2007 Dec;107(3):526–31.
    12. Mascini M, Tombelli S. Biosensors for biomarkers in medical diagnostics. Vol. 13, Biomarkers. 2008. p. 637–57.
    13. Laraib U, Sargazi S, Rahdar A, Khatami M, Pandey S. Nanotechnology-based approaches for effective detection of tumor markers: A comprehensive state-of-the-art review. Vol. 195, International Journal of Biological Macromolecules. Elsevier B.V.; 2022. p. 356–83.
    14. Charkhchi P, Cybulski C, Gronwald J, Wong FO, Narod SA, Akbari MR. Ca125 and ovarian cancer: A comprehensive review. Vol. 12, Cancers. MDPI AG; 2020. p. 1–29.
    15. Xiong S, Tang K. A diagnostic dilemma of a pulmonary nodule of a patient who suffered advanced ovarian cancer: A case report and a hypothesis. Int J Surg Case Rep. 2022 May 1;94.
    16. Valerievich Yumashev A, Rudiansyah M, Chupradit S, Kadhim MM, Turki Jalil A, Kamal Abdelbasset W, et al. Optical-based biosensor for detection of oncomarker CA 125, recent progress and current status. Anal Biochem. 2022 May;114750.
    17. Nguyen AQ, Ehmann S, Feinberg J, Tew WP, Carthew K, Sonoda Y, et al. Multiple isolated ovarian cancer recurrences in the cervix and vagina after supracervical hysterectomy: A case report. Gynecol Oncol Rep. 2022 Jun;41:101006.
    18. Nagare RP, Sneha S, Krishnapriya S, Ramachandran B, Murhekar K, Vasudevan S, et al. ALDH1A1+ ovarian cancer stem cells co-expressing surface markers CD24, EPHA1 and CD9 form tumours in vivo. Exp Cell Res. 2020 Jul 1;392(1).
    19. Dubeau L. The cell of origin of ovarian epithelial tumours. Vol. 9, The Lancet Oncology. Lancet Publishing Group; 2008. p. 1191–7.
    20. Singh M, Shankar A, Dhiman KS, Kotecha R, Rath GK. Targeting inflammation in ovarian cancer through natural antioxidants, potential therapeutic and preventive implications. Vol. 19, Asian Pacific Journal of Cancer Prevention. Asian Pacific Organization for Cancer Prevention; 2018. p. 2687–90.
    21. Wang G, Zhuang Z, Cheng J, Yang F, Zhu D, Jiang Z, et al. WITHDRAWN: Overexpression of SHARPIN promotes tumor progression in ovarian cancer. Exp Mol Pathol [Internet]. 2022 Jul;104806. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014480022000697
    22. Spencer C, Friedlander M. Chemical Pathology CURRENT STATUS OF THYROGLOBULIN (TG) MEASUREMENT IN THE MANAGEMENT OF DIFFERENTIATED THYROID CARCINOMA (DTC) A REVIEW OF THE CLINICAL UTILITY OF CA125 AND OTHER TUMOUR MARKERS IN OVARIAN CANCER.
    23. Kanabekova P, Al-Awadi AM, Bauyrzhanova Z, Tahtouh T, Sarray S, Almawi WY. Genetic variation in progesterone receptor gene and ovarian cancer risk: A case control study. Gene. 2022 Apr 30;820.
    24. Pradhan HK, Singh P, Ravikumar MS, Gothwal M. Study of risk factors and tumor markers in ovarian malignancy in western part of Odisha: a prospective observational study. Int J Reprod Contracept Obstet Gynecol. 2018 Mar 27;7(4):1571.
    25. Yang Y, Huang Q, Xiao Z, Liu M, Zhu Y, Chen Q, et al. Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer. Mater Today Bio. 2022 Jan 1;13.
    26. Eala MAB, Tantengco OAG. Global online interest in cervical cancer care in the time of COVID-19: An infodemiology study. Gynecol Oncol Rep. 2022 Jun 1;41.
    27. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022 Jan;72(1):7–33.
    28. Chen VW, Ruiz B, Killeen JL, Coté TR, Wu XC, Correa CN, et al. Pathology and classification of ovarian tumors. Cancer. 2003 May 15;97(10 SUPPL.):2631–42.
    29. Gupta S, Ahmad S, Brudie LA. Prevention of Ovarian Cancer. In: Preventive Oncology for the Gynecologist [Internet]. Singapore: Springer Singapore; 2019. p. 257–72. Available from: http://link.springer.com/10.1007/978-981-13-3438-2_20
    30. Kobayashi E, Ueda Y, Matsuzaki S, Yokoyama T, Kimura T, Yoshino K, et al. Biomarkers for screening, diagnosis, and monitoring of ovarian cancer. Vol. 21, Cancer Epidemiology Biomarkers and Prevention. 2012. p. 1902–12.
    31. Xiao Y, Bi M, Guo H, Li M. Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). EBioMedicine [Internet]. 2022;79:104001. Available from: https://doi.org/10.1016/j.
    32. Mortlock S, Corona RI, Kho PF, Pharoah P, Seo JH, Freedman ML, et al. A multi-level investigation of the genetic relationship between endometriosis and ovarian cancer histotypes. Cell Rep Med. 2022 Mar 15;3(3).
    33. Zhang X, Wang Y, Deng H, Xiong X, Zhang H, Liang T, et al. An aptamer biosensor for CA125 quantification in human serum based on upconversion luminescence resonance energy transfer. Microchemical Journal. 2021 Feb 1;161.
    34. de Castro ACH, Alves LM, Siquieroli ACS, Madurro JM, Brito-Madurro AG. Label-free electrochemical immunosensor for detection of oncomarker CA125 in serum. Microchemical Journal. 2020 Jun 1;155.
    35. Jacobs IJ, Skates SJ, Macdonald N, Menon U, Rosenthal AN, Davies AP, et al. 1207 Gynaecology Cancer Research Unit, Department of Gynaecological Oncology (I. Vol. 353, THE LANCET •. 1999.
    36. Carvalho VP de, Grassi ML, Palma C de S, Carrara HHA, Faça VM, Candido dos Reis FJ, et al. The contribution and perspectives of proteomics to uncover ovarian cancer tumor markers. Vol. 206, Translational Research. Mosby Inc.; 2019. p. 71–90.
    37. Han SN, Lotgerink A, Gziri MM, van Calsteren K, Hanssens M, Amant F. Physiologic variations of serum tumor markers in gynecological malignancies during pregnancy: a systematic review. BMC Med. 2012 Aug 8;10.
    38. Schoutrop E, Moyano-Galceran L, Lheureux S, Mattsson J, Lehti K, Dahlstrand H, et al. Molecular, cellular and systemic aspects of epithelial ovarian cancer and its tumor microenvironment. Seminars in Cancer Biology. Academic Press; 2022.
    39. Yin BWT, Lloyd KO. Molecular cloning of the CA125 ovarian cancer antigen: Identification as a new mucin, MUC16. Journal of Biological Chemistry. 2001 Jul 20;276(29):27371–5.
    40. Gadducci A, Cosio S, Carpi A, Nicolini A, Genazzani AR. Serum tumor markers in the management of ovarian, endometrial and cervical cancer. Biomedicine and Pharmacotherapy. 2004;58(1):24–38.
    41. Moser AC, Carlson TL. General principles of immunoassays. In: Novel Approaches in Immunoassays. Future Medicine Ltd.; 2014. p. 7–19.
    42. Lee AN, Kennedy IR. Immunoassays. In: Food Toxicants Analysis. Elsevier; 2007. p. 91–145.
    43. Hassanpour S, Hasanzadeh M. Label-free electrochemical-immunoassay of cancer biomarkers: Recent progress and challenges in the efficient diagnosis of cancer employing electroanalysis and based on point of care (POC). Microchemical Journal. 2021 Sep 1;168.
    44. Jeong S, Park MJ, Song W, Kim HS. Current immunoassay methods and their applications to clinically used biomarkers of breast cancer. Vol. 78, Clinical Biochemistry. Elsevier Inc.; 2020. p. 43–57.
    45. Mobed A, Hasanzadeh M, Ahmadalipour A, Fakhari A. Recent advances in the biosensing of neurotransmitters: Material and method overviews towards the biomedical analysis of psychiatric disorders. Analytical Methods. 2020 Jan 28;12(4):557–75.
    46. Mascini M, Tombelli S. Biosensors for biomarkers in medical diagnostics. Vol. 13, Biomarkers. 2008. p. 637–57.
    47. Valerievich Yumashev A, Rudiansyah M, Chupradit S, Kadhim MM, Turki Jalil A, Kamal Abdelbasset W, et al. Optical-based biosensor for detection of oncomarker CA 125, recent progress and current status. Anal Biochem. 2022 May;114750.
    48. Thévenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: Recommended definitions and classification. Vol. 34, Analytical Letters. 2001. p. 635–59.
    49. Monošík R, Streďanský M, Šturdík E. Biosensors - classification, characterization and new trends. Acta Chimica Slovaca. 2012 May 17;5(1):109–20.
    50. Damiati S, Schuster B. Electrochemical biosensors based on S-layer proteins. Sensors (Switzerland). 2020 Mar 2;20(6).
    51. Gautam RK, Verma A. Electrocatalyst materials for oxygen reduction reaction in microbial fuel cell. In: Biomass, Biofuels, Biochemicals: Microbial Electrochemical Technology: Sustainable Platform for Fuels, Chemicals and Remediation. Elsevier; 2018. p. 451–83.
    52. Tofighy MA, Mohammadi T. Barrier, diffusion, and transport properties of rubber nanocomposites containing carbon nanofillers. In: Carbon-Based Nanofillers and Their Rubber Nanocomposites: Fundamentals and Applications. Elsevier; 2019. p. 253–85.
    53. Singh S, Hasan MohdR, Sharma P, Narang J. Graphene nanomaterials: The wondering material from synthesis to applications. Sensors International. 2022 Jun;100190.
    54. Sabdin S, Azraie Mohd Azmi M, Azurin Badruzaman N, Zuriati Makmon F, Abd Aziz A, Azura Mohd Said N. Effect of APTES Percentage towards Reduced Graphene Oxide Screen Printed Electrode Surface for Biosensor Application. In: Materials Today: Proceedings. Elsevier Ltd; 2019. p. 1183–8.
    55. Portaccio M, di Tuoro D, Arduini F, Lepore M, Mita DG, Diano N, et al. A thionine-modified carbon paste amperometric biosensor for catechol and bisphenol A determination. Biosens Bioelectron. 2010 May;25(9):2003–8.
    56. Sun Z, Fu H, Deng L, Wang J. Redox-active thionine-graphene oxide hybrid nanosheet: One-pot, rapid synthesis, and application as a sensing platform for uric acid. Anal Chim Acta. 2013 Jan 25;761:84–91.
    57. Krzyszkowska E, Walkowiak-Kulikowska J, Stienen S, Wojcik A. Thionine-graphene oxide covalent hybrid and its interaction with light. Physical Chemistry Chemical Physics. 2017;19(22):14412–23.
    58. Tao D, Xie C, Fu S, Rong S, Song S, Ye H, et al. Thionine-functionalized three-dimensional carbon nanomaterial-based aptasensor for analysis of Aβ oligomers in serum. Anal Chim Acta. 2021 Oct 23;1183.
    59. Zhu L, Luo L, Wang Z. DNA electrochemical biosensor based on thionine-graphene nanocomposite. Biosens Bioelectron. 2012 May 15;35(1):507–11.
    60. Munguía-Cortés L, Pérez-Hermosillo I, Ojeda-López R, Esparza-Schulz JM, Felipe-Mendoza C, Cervantes-Uribe A, et al. APTES-functionalization of SBA-15 using ethanol or toluene: Textural characterization and sorption performance of carbon dioxide. J Mex Chem Soc. 2017;61(4):273–81.
    61. Fatihah N, Arifin T, Azira N, Yusof N, Zulkipli N, Fauzi Ismail A, et al. Preparation and Characterization of APTES-functionalized Graphene Oxide for CO 2 Adsorption New thin membran from cengkeh for DMFC application View project Electrolyte modification fo micro-tubular solid oxide fuel cell View project Preparation and Characterization of APTES-functionalized Graphene Oxide for CO 2 Adsorption. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal homepage [Internet]. 2019;61:297–305. Available from: www.akademiabaru.com/arfmts.html
    62. Mirzaie V, Ansari M, Nematollahimahani SN, Nasery MM, Karimi B, Eslaminejad T, et al. Nano-graphene oxide-supported APTESspermine, as gene delivery system, for transfection of pEGFP-p53 into breast cancer cell lines. Drug Des Devel Ther. 2020;14:3087–97.
    63. Su L, Tao Q, He H, Zhu J, Yuan P, Zhu R. Silylation of montmorillonite surfaces: Dependence on solvent nature. J Colloid Interface Sci. 2013 Feb 1;391(1):16–20.
    64. de O. N. Ribeiro J, Nunes EHM, Vasconcelos DCL, Vasconcelos WL, Nascimento JF, Grava WM, et al. Role of the type of grafting solvent and its removal process on APTES functionalization onto SBA-15 silica for CO2 adsorption. Journal of Porous Materials. 2019;26(6):1581–91.
    65. Liao X, Zhang Y, Guo J, Zhao L, Hill M, Jiang Z, et al. The catalytic hydrogenation of maleic anhydride on CeO2−δ-supported transition metal catalysts. Catalysts. 2017 Sep 14;7(9).
    66. Tian WP, Guo SF, Shi L. Selective hydrogenation of maleic anhydride to succinic anhydride over nickel-palladium catalysts. Pet Sci Technol. 2014 Aug 3;32(15):1784–90.
    67. Westbroek P. Electrochemical methods. In: Analytical Electrochemistry in Textiles. Elsevier Inc.; 2005. p. 37–69.
    68. Scott K. Electrochemical Principles and Characterization of Bioelectrochemical Systems. In: Microbial Electrochemical and Fuel Cells: Fundamentals and Applications. Elsevier Inc.; 2016. p. 29–66.
    69. Samadi Pakchin P, Fathi M, Ghanbari H, Saber R, Omidi Y. A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosens Bioelectron. 2020 Apr 1;153.
    70. Saadatkhah N, Carillo Garcia A, Ackermann S, Leclerc P, Latifi M, Samih S, et al. Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. Vol. 98, Canadian Journal of Chemical Engineering. Wiley-Liss Inc.; 2020. p. 34–43.
    71. optofluidicbioassay@vdmn. “Understanding Sandwich ELISA; Its Advantages and Steps - Optofluidic Bioassay.” Optofluidic Bioassay, www.optobio.com, 29 June 2021, https://www.optobio.com/understanding-sandwich-elisa-its-advantages-and-steps/.
    72. “ELISA Guide - Creative Diagnostics.” ELISA Guide - Creative Diagnostics, www.creative-diagnostics.com, https://www.creative-diagnostics.com/ELISA-guide.htm. Accessed 26 Aug. 2022.
    73. “(3-Aminopropyl) Triethoxysilane - Wikipedia.” (3-Aminopropyl) Triethoxysilane - Wikipedia, en.wikipedia.org, 1 Aug. 2012, https://en.wikipedia.org/wiki/(3-Aminopropyl)triethoxysilane.
    74. “Succinic Anhydride | ≥99%(HPLC) | Selleck | ADC Linker Chemical.” Selleckchem.Com, www.selleckchem.com, https://www.selleckchem.com/products/succinic-anhydride.html. Accessed 26 Aug. 2022.
    75. “Thermogravimetry Analysis (TGA).” Thermogravimetry Analysis (TGA), mse.ntust.edu.tw, https://mse.ntust.edu.tw/p/412-1019-1747.php?Lang=en. Accessed 26 Aug. 2022.
    76. “Scanning Electron Microscope (SEM) - Diagram, Working Principle, Components and Cost.” Microscope Wiki, microscopewiki.com, 24 Jan. 2022, https://microscopewiki.com/scanning-electron-microscope/.

    無法下載圖示 全文公開日期 2023/09/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE