簡易檢索 / 詳目顯示

研究生: Dinh Thi Thuy Van
Dinh Thi Thuy Van
論文名稱: Flower shaped covalent organic frameworks synthesis and its anticancer drug delivery application via keto-enol tautomerism
Flower shaped covalent organic frameworks synthesis and its anticancer drug delivery application via keto-enol tautomerism
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: Chen-Yu Kao
Chen-Yu Kao
Kao-Shu Chuang
Kao-Shu Chuang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 67
中文關鍵詞: 共價有機框架材料 (COFs)玻尿酸 (HA)阿黴素癌症化療
外文關鍵詞: Covalent organic framework (COFs), hyaluronic acid (HA), doxorubicin, cancer, chemotherapy
相關次數: 點閱:267下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症每年造成全球數百萬人死亡。目前為止,癌症的治療方法非常多種,化療雖然是治療癌症的主要方法,但是其中存在了非常多限制。因此,多功能的奈米粒子成功的在癌症療法中脫穎而出。近期發明出通過溶劑熱法合成出一種新的材料體系,名為共價有機框架材料(COF)。溶劑熱法通常需要耐熱密封管的高溫高壓,這使得難以擴大規模生產。因此,在室溫製備亞胺連接的COFs是解決這項問題的方法,因為其易於製備、可以放大生產和成本較低。在本研究中,使用1,3,5-triformylphloroglucinol (TFPG)和diaminobenzen-1,4-diol (DABD)混合於鄰二甲苯和丁醇混合溶液中,組成花形的COFs (FSCOFs)。藉由粉末XRD和BET測得FSCOFs具有孔徑約為10 nm的結晶度。為了增加膠體穩定性,加入玻尿酸至FSCOFs製成FSCOFs-HA。設計出的FSCOFs-DOX-HA被證明出是一種pH敏感性藥物載體,可將抗癌藥物遞送至癌細胞中。細胞毒性測試和藥物內化數據證明FSCOFs-DOX-HA會持續釋放DOX。最後,藉由螢光顯微鏡顯示出FSCOFs-DOX-HA在細胞攝取和釋放抗癌藥物是有效的。因此,藥物載體系統COFs中,FSCOFs為此研究領域開闢了新的研究道路。


    Every year, cancer causes millions of deaths worldwide. Currently, cancer is treated in many ways, but chemotherapy is still the main method to cure cancer with many limitations. Therefore, the multifunctional nanoparticles in cancer therapy have been explored successfully. Among these, a new type of system called the covalent organic framework (COFs) is recently invented and synthesized by the classic solvothermal method. Solvothermal method typically relies on high pressure and temperature in a sealed pyrex tube, which made it difficult to scale up for mass production. Fabrication of imine-linked COFs at room temperature is a vital solution to these problems due to the facile and easy preparation, practical scale-up, and low cost. In this research, Flower shaped COFs (FSCOFs) were synthesized using building blocks of 1,3,5-triformylphloroglucinol (TFPG) with diaminobenzen-1,4-diol (DABD) in ortho-xylene and butanol mixture. The FSCOFs have crystallinity with a pore size of approximately 10 nm, which was confirmed by PXRD and BET measurements. In order to increase the colloidal stability, hyaluronic acid was introduced into the FSCOFs (FSCOFs-HA). The designed FSCOFs-DOX-HA was demonstrated as a pH-sensitive drug carrier to deliver anticancer drugs into the cancer cells. The MTT and drug internalization data demonstrated sustained DOX release from FSCOFs-DOX-HA. Finally, the real-time fluorescence demonstrates the effectiveness of the FSCOFs-DOX-HA upon cellular uptake and release of the anticancer drug. Thus, the FSCOFs system reported here opens a new way in COFs research for drug carrier systems.

    ABSTRACT I 摘要 III List of figures VI List of tables VII List of abbreviations VIII CHAPTER 1: INTRODUCTION 1 1.1 Research background 1 1.2 Research Objectives 3 CHAPTER 2. LITERATURE REVIEW 4 2.1 Overview of cancer 4 2.2 Cancer treatment 6 2.2.1 Surgery 6 2.2.2 Radiation therapy 7 2.2.3 Chemotherapy 8 2.3 Tumor vasculature as targeted in cancer 9 2.4 Effect of tumor microenvironment in drug delivery system 10 2.5 Drug delivery 11 2.5.1 pH-triggered drug delivery systems 13 CHAPTER 3: POROUS MATERIALS 14 3.1. Zeolite 15 3.2 Metal-organic frameworks 16 3.3. Covalent organic frameworks 18 CHAPTER 4: MATERIALS AND METHOD 21 4.1 Chemicals and reagents 21 4.2 Synthesis 1,3,5-triformylphloroglucinol (TFPG) 21 4.3 Synthesis of FSCOFs 21 4.4 Characterization of FSCOFs 22 4.5 Drug loading and stabilization with Hyaluronic acid (FSCOFs- DOX-HA) 22 4.6 In vitro cytotoxicity 23 4.7 In vitro cellular uptake 24 CHAPTER 5: RESULT AND DISCUSSION 25 CHAPTER 6: CONCLUSION 46 REFERENCE 47

    1. (WHO), W. H. O., International Agency for Research on Cancer Global cancer observatory. 2020.
    2. Rahman, M., Metabolic Pathways and Chemotherapy Drugs. In Frontiers in Drug Design & Discovery, 2016; pp 3-35.
    3. Bhosle, J.; Hall, G., Principles of cancer treatment by chemotherapy. Surgery (Oxford) 2009, 27 (4), 173-177.
    4. Amjad, M. T.; Chidharla, A.; Kasi, A., Cancer Chemotherapy. BTI - StatPearls.
    5. Carvalho, C.; Santos Rx Fau - Cardoso, S.; Cardoso S Fau - Correia, S.; Correia S Fau - Oliveira, P. J.; Oliveira Pj Fau - Santos, M. S.; Santos Ms Fau - Moreira, P. I.; Moreira, P. I., Doxorubicin: the good, the bad and the ugly effect. (1875-533X (Electronic)).
    6. Argenziano, M.; Gigliotti, C. A.-O.; Clemente, N. A.-O.; Boggio, E. A.-O.; Ferrara, B.; Trotta, F.; Pizzimenti, S. A.-O.; Barrera, G.; Boldorini, R.; Bessone, F.; Dianzani, U.; Cavalli, R.; Dianzani, C., Improvement in the Anti-Tumor Efficacy of Doxorubicin Nanosponges in In Vitro and in Mice Bearing Breast Tumor Models. LID - 10.3390/cancers12010162 [doi] LID - 162. (2072-6694 (Print)).
    7. Rivankar, S., An overview of doxorubicin formulations in cancer therapy. (1998-4138 (Electronic)).
    8. Fornari, F. A.; Randolph Jk Fau - Yalowich, J. C.; Yalowich Jc Fau - Ritke, M. K.; Ritke Mk Fau - Gewirtz, D. A.; Gewirtz, D. A., Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. (0026-895X (Print)).
    9. Bukowski, K.; Kciuk, M.; Kontek, R., Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int J Mol Sci 2020, 21 (9).
    10. Altun, İ.; Sonkaya, A., The Most Common Side Effects Experienced by Patients Were Receiving First Cycle of Chemotherapy. (2251-6085 (Print)).
    11. Jin, J. F.; Zhu, L. L.; Chen, M.; Xu, H. M.; Wang, H. F.; Feng, X. Q.; Zhu, X. P.; Zhou, Q., The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Prefer Adherence 2015, 9, 923-42.
    12. Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A., Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020, 7, 193.
    13. Aghebati-Maleki, A.; Dolati, S.; Ahmadi, M.; Baghbanzhadeh, A.; Asadi, M.; Fotouhi, A.; Yousefi, M.; Aghebati-Maleki, L., Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol 2020, 235 (3), 1962-1972.
    14. Gavas, S.; Quazi, S.; Karpiński, T. A.-O., Nanoparticles for Cancer Therapy: Current Progress and Challenges. (1931-7573 (Print)).
    15. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.
    16. Li, Z.; He, T.; Gong, Y.; Jiang, D., Covalent Organic Frameworks: Pore Design and Interface Engineering. Acc Chem Res 2020, 53 (8), 1672-1685.
    17. He, Q.; Chen, J.; Yan, J.; Cai, S.; Xiong, H.; Liu, Y.; Peng, D.; Mo, M.; Liu, Z., Tumor microenvironment responsive drug delivery systems. (2221-285X (Electronic)).
    18. Krieghoff-Henning E Fau - Folkerts, J.; Folkerts J Fau - Penzkofer, A.; Penzkofer A Fau - Weg-Remers, S.; Weg-Remers, S., Cancer – an overview. (0342-9601 (Print)).
    19. Nanoparticles in Lung Cancer Therapy - Recent Trends. 2015.
    20. Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021, 71 (3), 209-249.
    21. Pucci, C.; Martinelli, C.; Ciofani, G., Innovative approaches for cancer treatment: current perspectives and new challenges. (1754-6605 (Print)).
    22. Falzone, L.; Salomone, S.; Libra, M., Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. (1663-9812 (Print)).
    23. Wyld, L.; Audisio, R. A.; Poston, G. J., The evolution of cancer surgery and future perspectives. (1759-4782 (Electronic)).
    24. Sullivan, R.; Alatise, O. I.; Anderson, B. O.; Audisio, R.; Autier, P.; Aggarwal, A.; Balch, C.; Brennan, M. F.; Dare, A.; D'Cruz, A. J. T. l. o., Global cancer surgery: delivering safe, affordable, and timely cancer surgery. 2015, 16 (11), 1193-1224.
    25. Sullivan, R.; Alatise, O. I.; Anderson, B. O.; Audisio, R.; Autier, P.; Aggarwal, A.; Balch, C.; Brennan, M. F.; Dare, A.; D'Cruz, A.; Eggermont, A. M. M.; Fleming, K.; Gueye, S. M.; Hagander, L.; Herrera, C. A.; Holmer, H.; Ilbawi, A. M.; Jarnheimer, A.; Ji, J.-f.; Kingham, T. P.; Liberman, J.; Leather, A. J. M.; Meara, J. G.; Mukhopadhyay, S.; Murthy, S. S.; Omar, S.; Parham, G. P.; Pramesh, C. S.; Riviello, R.; Rodin, D.; Santini, L.; Shrikhande, S. V.; Shrime, M.; Thomas, R.; Tsunoda, A. T.; van de Velde, C.; Veronesi, U.; Vijaykumar, D. K.; Watters, D.; Wang, S.; Wu, Y.-L.; Zeiton, M.; Purushotham, A., Global cancer surgery: delivering safe, affordable, and timely cancer surgery. The Lancet Oncology 2015, 16 (11), 1193-1224.
    26. Baskar R Fau - Yap, S. P.; Yap Sp Fau - Chua, K. L. M.; Chua Kl Fau - Itahana, K.; Itahana, K., The diverse and complex roles of radiation on cancer treatment: therapeutic target and genome maintenance. (2156-6976 (Electronic)).
    27. Baskar, R.; Dai, J.; Wenlong, N.; Yeo, R.; Yeoh, K.-W., Biological response of cancer cells to radiation treatment. 2014, 1.
    28. Jackson, S. P.; Bartek, J., The DNA-damage response in human biology and disease. Nature 2009, 461 (7267), 1071-1078.
    29. Gong, L.; Zhang, Y.; Liu, C.; Zhang, M.; Han, S., Application of Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine 2021, 16, 1083-1102.
    30. Shahidian, A.; Ghassemi, M.; Mohammadi, J.; Hashemi, M., Immunotherapy. In Bio-Engineering Approaches to Cancer Diagnosis and Treatment, 2020; pp 69-114.
    31. Marin, J. J.; Romero Mr Fau - Blazquez, A. G.; Blazquez Ag Fau - Herraez, E.; Herraez E Fau - Keck, E.; Keck E Fau - Briz, O.; Briz, O., Importance and limitations of chemotherapy among the available treatments for gastrointestinal tumours. (1875-5992 (Electronic)).
    32. Hossen, S.; Hossain, M. K.; Basher, M. K.; Mia, M. N. H.; Rahman, M. T.; Uddin, M. J., Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. (2090-1232 (Print)).
    33. Mattheolabakis, G.; Mikelis, C. M., Nanoparticle Delivery and Tumor Vascular Normalization: The Chicken or The Egg? (2234-943X (Print)).
    34. Gordon, M. S.; Mendelson, D. S.; Kato, G., Tumor angiogenesis and novel antiangiogenic strategies. Int J Cancer 2010, 126 (8), 1777-1787.
    35. Leu, A. J.; Berk Da Fau - Lymboussaki, A.; Lymboussaki A Fau - Alitalo, K.; Alitalo K Fau - Jain, R. K.; Jain, R. K., Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. (0008-5472 (Print)).
    36. Carmeliet, P.; Jain, R. K., Angiogenesis in cancer and other diseases. (0028-0836 (Print)).
    37. Vaupel, P.; Hockel, M., Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance. (1019-6439 (Print)).
    38. Vaupel P Fau - Fortmeyer, H. P.; Fortmeyer Hp Fau - Runkel, S.; Runkel S Fau - Kallinowski, F.; Kallinowski, F., Blood flow, oxygen consumption, and tissue oxygenation of human breast cancer xenografts in nude rats. (0008-5472 (Print)).
    39. Hirata, E.; Sahai, E., Tumor Microenvironment and Differential Responses to Therapy. LID - 10.1101/cshperspect.a026781 [doi] LID - a026781. (2157-1422 (Electronic)).
    40. Clark, D. W.; Phang T Fau - Edwards, M. G.; Edwards Mg Fau - Geraci, M. W.; Geraci Mw Fau - Gillespie, M. N.; Gillespie, M. N., Promoter G-quadruplex sequences are targets for base oxidation and strand cleavage during hypoxia-induced transcription. (1873-4596 (Electronic)).
    41. Nilsson, C.; Kågedal K Fau - Johansson, U.; Johansson U Fau - Ollinger, K.; Ollinger, K., Analysis of cytosolic and lysosomal pH in apoptotic cells by flow cytometry. (1381-5741 (Print)).
    42. Lee, E. S.; Gao Z Fau - Bae, Y. H.; Bae, Y. H., Recent progress in tumor pH targeting nanotechnology. (1873-4995 (Electronic)).
    43. Peng, S.; Xiao, F.; Chen, M.; Gao, H., Tumor-Microenvironment-Responsive Nanomedicine for Enhanced Cancer Immunotherapy. Adv Sci (Weinh) 2022, 9 (1), e2103836.
    44. Sawyers, C. J. N., Targeted cancer therapy. 2004, 432 (7015), 294-297.
    45. Jain, V.; Jain S Fau - Mahajan, S. C.; Mahajan, S. C., Nanomedicines based drug delivery systems for anti-cancer targeting and treatment. (1875-5704 (Electronic)).
    46. Maeda, H.; Wu J Fau - Sawa, T.; Sawa T Fau - Matsumura, Y.; Matsumura Y Fau - Hori, K.; Hori, K., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. (0168-3659 (Print)).
    47. Shi, Y.; van der Meel, R.; Chen, X.; Lammers, T., The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. (1838-7640 (Electronic)).
    48. Ruiz-Garcia, H.; Ramirez-Loera, C.; Malouff, T. D.; Seneviratne, D. S.; Palmer, J. D.; Trifiletti, D. M., Novel Strategies for Nanoparticle-Based Radiosensitization in Glioblastoma. Int J Mol Sci 2021, 22 (18).
    49. Matsumura Y Fau - Maeda, H.; Maeda, H., A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. (0008-5472 (Print)).
    50. Gatenby, R. A.; Gillies, R. J., Why do cancers have high aerobic glycolysis? (1474-175X (Print)).
    51. Vander Heiden, M. G.; Cantley Lc Fau - Thompson, C. B.; Thompson, C. B., Understanding the Warburg effect: the metabolic requirements of cell proliferation. (1095-9203 (Electronic)).
    52. Allen, T. M.; Cullis, P. R., Drug delivery systems: entering the mainstream. (1095-9203 (Electronic)).
    53. Gunatillake, P.; Mayadunne, R.; Adhikari, R., Recent developments in biodegradable synthetic polymers. In Biotechnology Annual Review, El-Gewely, M. R., Ed. Elsevier: 2006; Vol. 12, pp 301-347.
    54. Acharya, A. P.; Lewis, J. S.; Keselowsky, B. G., Combinatorial co-encapsulation of hydrophobic molecules in poly(lactide-co-glycolide) microparticles. Biomaterials 2013, 34 (13), 3422-30.
    55. Nixon, J. R., Microencapsulation. Marcel Dekker: 1976; Vol. 3.
    56. Brigger, I.; Dubernet, C.; Couvreur, P., Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews 2012, 64, 24-36.
    57. Yu, J.; Corma, A.; Li, Y., Functional Porous Materials Chemistry. Adv Mater 2020, 32 (44), e2006277.
    58. Peng, Z.; Tang, P.; Zhao, L.; Wu, L.; Xu, X.; Lei, H.; Zhou, M.; Zhou, C.; Li, Z., Advances in biomaterials for adipose tissue reconstruction in plastic surgery. Nanotechnology Reviews 2020, 9 (1), 385-395.
    59. Gammon, J. M.; Jewell, C. M., Engineering Immune Tolerance with Biomaterials. Adv Healthc Mater 2019, 8 (4), e1801419.
    60. Hernandez, J. L.; Woodrow, K. A., Medical Applications of Porous Biomaterials: Features of Porosity and Tissue-Specific Implications for Biocompatibility. Adv Healthc Mater 2022, 11 (9), e2102087.
    61. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M., Porous, Crystalline, Covalent Organic Frameworks. 2005, 310 (5751), 1166-1170.
    62. Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M., The chemistry and applications of metal-organic frameworks. Science 2013, 341 (6149), 1230444.
    63. Kraljević Pavelić, S.; Simović Medica, J.; Gumbarević, D.; Filošević, A.; Pržulj, N.; Pavelić, K. J. F. i. p., Critical review on zeolite clinoptilolite safety and medical applications in vivo. 2018, 9, 1350.
    64. Mastinu, A.; Kumar, A.; Maccarinelli, G.; Bonini, S. A.; Premoli, M.; Aria, F.; Gianoncelli, A.; Memo, M. J. M., Zeolite clinoptilolite: Therapeutic virtues of an ancient mineral. 2019, 24 (8), 1517.
    65. Jha, B.; Singh, D. N., Basics of zeolites. In Fly Ash Zeolites, Springer: 2016; pp 5-31.
    66. Pavelić, K.; Hadžija, M.; Bedrica, L.; Pavelić, J.; Ðikić, I.; Katić, M.; Kralj, M.; Bosnar, M. H.; Kapitanović, S.; Poljak-Blaži, M. J. J. o. m. m., Natural zeolite clinoptilolite: new adjuvant in anticancer therapy. 2001, 78 (12), 708-720.
    67. Rodriguez-Fuentes, G.; Barrios, M.; Iraizoz, A.; Perdomo, I.; Cedre, B. J. Z., Enterex: Anti-diarrheic drug based on purified natural clinoptilolite. 1997, 19 (5-6), 441-448.
    68. Fang, X.; Liu, Z.; Hsieh, M.-F.; Chen, M.; Liu, P.; Chen, C.; Zheng, N. J. A. n., Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors. 2012, 6 (5), 4434-4444.
    69. Rastin, H.; Saeb, M. R.; Nonahal, M.; Shabanian, M.; Vahabi, H.; Formela, K.; Gabrion, X.; Seidi, F.; Zarrintaj, P.; Sari, M. G. J. P. i. O. C., Transparent nanocomposite coatings based on epoxy and layered double hydroxide: Nonisothermal cure kinetics and viscoelastic behavior assessments. 2017, 113, 126-135.
    70. Pavelić, K.; Hadžija, M.; Bedrica, L.; Pavelić, J.; Ðikić, I.; Katić, M.; Kralj, M.; Bosnar, M. H.; Kapitanović, S.; Poljak-Blaži, M.; Križanac, Š.; Stojković, R.; Jurin, M.; Subotić, B.; Čolić, M., Natural zeolite clinoptilolite: new adjuvant in anticancer therapy. Journal of Molecular Medicine 2001, 78 (12), 708-720.
    71. Zarkovic, N.; Zarkovic K Fau - Kralj, M.; Kralj M Fau - Borovic, S.; Borovic S Fau - Sabolovic, S.; Sabolovic S Fau - Blazi, M. P.; Blazi Mp Fau - Cipak, A.; Cipak A Fau - Pavelic, K.; Pavelic, K., Anticancer and antioxidative effects of micronized zeolite clinoptilolite. (0250-7005 (Print)).
    72. Wen, X.; Yang, F.; Ke, Q. F.; Xie, X. T.; Guo, Y. P., Hollow mesoporous ZSM-5 zeolite/chitosan ellipsoids loaded with doxorubicin as pH-responsive drug delivery systems against osteosarcoma. J Mater Chem B 2017, 5 (38), 7866-7875.
    73. de Moura Ferraz, L. R.; Tabosa, A.; da Silva Nascimento, D. D. S.; Ferreira, A. S.; de Albuquerque Wanderley Sales, V.; Silva, J. Y. R.; Junior, S. A.; Rolim, L. A.; de Souza Pereira, J. J.; Rolim-Neto, P. J., ZIF-8 as a promising drug delivery system for benznidazole: development, characterization, in vitro dialysis release and cytotoxicity. Sci Rep 2020, 10 (1), 16815.
    74. Qin, Y. T.; Feng, Y. S.; Ma, Y. J.; He, X. W.; Li, W. Y.; Zhang, Y. K., Tumor-Sensitive Biodegradable Nanoparticles of Molecularly Imprinted Polymer-Stabilized Fluorescent Zeolitic Imidazolate Framework-8 for Targeted Imaging and Drug Delivery. ACS Appl Mater Interfaces 2020, 12 (22), 24585-24598.
    75. Wu, Q.; Niu, M.; Chen, X.; Tan, L.; Fu, C.; Ren, X.; Ren, J.; Li, L.; Xu, K.; Zhong, H.; Meng, X., Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. Biomaterials 2018, 162, 132-143.
    76. Zhang, S.; Chu Z Fau - Yin, C.; Yin C Fau - Zhang, C.; Zhang C Fau - Lin, G.; Lin G Fau - Li, Q.; Li, Q., Controllable drug release and simultaneously carrier decomposition of SiO2-drug composite nanoparticles. (1520-5126 (Electronic)).
    77. Cui, W.; Li, J.; Decher, G., Self-Assembled Smart Nanocarriers for Targeted Drug Delivery. (1521-4095 (Electronic)).
    78. Beaucham, C.; King, B.; Feldmann, K.; Harper, M.; Dozier, A., Assessing occupational erionite and respirable crystalline silica exposure among outdoor workers in Wyoming, South Dakota, and Montana. (1545-9632 (Electronic)).
    79. Giordani, M.; Mattioli, M.; Ballirano, P.; Pacella, A.; Cenni, M.; Boscardin, M.; Valentini, L., Geological occurrence, mineralogical characterization, and risk assessment of potentially carcinogenic erionite in Italy. (1521-6950 (Electronic)).
    80. Demirer, E.; Ghattas, C. F.; Radwan, M. O.; Elamin, E. M., Clinical and prognostic features of erionite-induced malignant mesothelioma. (1976-2437 (Electronic)).
    81. Abadeh, Z. A.; Saviano, G.; Ballirano, P.; Santonicola, M. G., Curcumin-loaded zeolite as anticancer drug carrier: Effect of curcumin adsorption on zeolite structure. Pure and Applied Chemistry 2020, 92 (3), 461-471 %@ 1365-3075.
    82. Kihara, T.; Zhang, Y.; Hu, Y.; Mao, Q.; Tang, Y.; Miyake, J., Effect of composition, morphology and size of nanozeolite on its in vitro cytotoxicity. J Biosci Bioeng 2011, 111 (6), 725-30.
    83. Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. J. A. m., Metal‐organic frameworks: A rapidly growing class of versatile nanoporous materials. 2011, 23 (2), 249-267.
    84. Zhou, H.-C.; Long, J. R.; Yaghi, O. M. J. C. r., Introduction to metal–organic frameworks. ACS Publications: 2012; Vol. 112, pp 673-674.
    85. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. J. S., The chemistry and applications of metal-organic frameworks. 2013, 341 (6149), 1230444.
    86. Singh, C.; Mukhopadhyay, S.; Hod, I., Metal-organic framework derived nanomaterials for electrocatalysis: recent developments for CO2 and N2 reduction. Nano Converg 2021, 8 (1), 1.
    87. Silva, P.; Vilela, S. M.; Tome, J. P.; Paz, F. A. A. J. C. S. R., Multifunctional metal–organic frameworks: from academia to industrial applications. 2015, 44 (19), 6774-6803.
    88. Martí-Rujas, J. J. D. T., Structural elucidation of microcrystalline MOFs from powder X-ray diffraction. 2020, 49 (40), 13897-13916.
    89. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C., Metal-organic frameworks in biomedicine. Chem Rev 2012, 112 (2), 1232-68.
    90. Introduction to Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 673-674.
    91. Griaznova, O. Y.; Zelepukin, I.; Tikhonowski, G.; Kolokolnikov, V.; Deyev, S. In MIL-53 (Al) metal-organic frameworks as potential drug carriers, Journal of Physics: Conference Series, IOP Publishing: 2021; p 012015.
    92. Pham, H.; Ramos, K.; Sua, A.; Acuna, J.; Slowinska, K.; Nguyen, T.; Bui, A.; Weber, M. D. R.; Tian, F., Tuning Crystal Structures of Iron-Based Metal-Organic Frameworks for Drug Delivery Applications. (2470-1343 (Electronic)).
    93. Al-Ansari, D. E.; Al-Badr, M.; Zakaria, Z. Z.; Mohamed, N. A.; Nasrallah, G. K.; Yalcin, H. C.; Abou-Saleh, H., Evaluation of Metal‐Organic Framework MIL-89 nanoparticles toxicity on embryonic zebrafish development. Toxicology Reports 2022, 9, 951-960.
    94. Horcajada, P.; Serre, C.; Vallet‐Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. J. A. c., Metal–organic frameworks as efficient materials for drug delivery. 2006, 118 (36), 6120-6124.
    95. Jodłowski, P. J.; Kurowski, G.; Kuterasiński, Ł.; Sitarz, M.; Jeleń, P.; Jaśkowska, J.; Kołodziej, A.; Pajdak, A.; Majka, Z.; Boguszewska-Czubara, A., Cracking the Chloroquine Conundrum: The Application of Defective UiO-66 Metal–Organic Framework Materials to Prevent the Onset of Heart Defects—In Vivo and In Vitro. ACS Applied Materials & Interfaces 2021, 13 (1), 312-323.
    96. Liu, W.; Pan, Y.; Zhong, Y.; Li, B.; Ding, Q.; Xu, H.; Qiu, Y.; Ren, F.; Li, B.; Muddassir, M.; Liu, J., A multifunctional aminated UiO-67 metal-organic framework for enhancing antitumor cytotoxicity through bimodal drug delivery. Chemical Engineering Journal 2021, 412, 127899.
    97. Abánades Lázaro, I.; Haddad, S.; Rodrigo-Muñoz, J. M.; Marshall, R. J.; Sastre, B.; Del Pozo, V.; Fairen-Jimenez, D. A.-O.; Forgan, R. A.-O., Surface-Functionalization of Zr-Fumarate MOF for Selective Cytotoxicity and Immune System Compatibility in Nanoscale Drug Delivery. (1944-8252 (Electronic)).
    98. Hu, Q.; Yu, J.; Liu, M.; Liu, A.; Dou, Z.; Yang, Y. J. J. o. M. C., A low cytotoxic cationic metal–organic framework carrier for controllable drug release. 2014, 57 (13), 5679-5685.
    99. de Moura Ferraz, L. R.; Tabosa, A. É. G. A.; da Silva Nascimento, D. D. S.; Ferreira, A. S.; de Albuquerque Wanderley Sales, V.; Silva, J. Y. R.; Júnior, S. A.; Rolim, L. A.; de Souza Pereira, J. J.; Rolim-Neto, P. J., ZIF-8 as a promising drug delivery system for benznidazole: development, characterization, in vitro dialysis release and cytotoxicity. Scientific reports 2020, 10 (1), 16815-16815.
    100. Chen, G.; Luo, J.; Cai, M.; Qin, L.; Wang, Y.; Gao, L.; Huang, P.; Yu, Y.; Ding, Y.; Dong, X.; Yin, X.; Ni, J., Investigation of Metal-Organic Framework-5 (MOF-5) as an Antitumor Drug Oridonin Sustained Release Carrier. Molecules (Basel, Switzerland) 2019, 24 (18), 3369.
    101. Ruyra, À.; Yazdi A Fau - Espín, J.; Espín J Fau - Carné-Sánchez, A.; Carné-Sánchez A Fau - Roher, N.; Roher N Fau - Lorenzo, J.; Lorenzo J Fau - Imaz, I.; Imaz I Fau - Maspoch, D.; Maspoch, D., Synthesis, culture medium stability, and in vitro and in vivo zebrafish embryo toxicity of metal-organic framework nanoparticles. (1521-3765 (Electronic)).
    102. Nagai, A.; Guo, Z.; Feng, X.; Jin, S.; Chen, X.; Ding, X.; Jiang, D., Pore surface engineering in covalent organic frameworks. Nat Commun 2011, 2, 536.
    103. Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.; Qiu, S.; Yan, Y., Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat Commun 2014, 5, 4503.
    104. Kandambeth, S.; Dey, K.; Banerjee, R., Covalent Organic Frameworks: Chemistry beyond the Structure. J Am Chem Soc 2019, 141 (5), 1807-1822.
    105. Sun, Q.; Aguila, B.; Earl, L. D.; Abney, C. W.; Wojtas, L.; Thallapally, P. K.; Ma, S., Covalent Organic Frameworks as a Decorating Platform for Utilization and Affinity Enhancement of Chelating Sites for Radionuclide Sequestration. Adv Mater 2018, 30 (20), e1705479.
    106. Adrien, P. C.; Annabelle, I. B.; Nathan, W. O.; Michael, O. K.; Adam, J. M.; Omar, M. Y., Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310 (5751), 1166-1170.
    107. Shi, X.; Li, N.; Wu, D.; Hu, N.; Sun, J.; Zhou, X.; Suo, Y.; Li, G.; Wu, Y., Magnetic covalent organic framework material: synthesis and application as a sorbent for polycyclic aromatic hydrocarbons. Analytical Methods 2018, 10 (41), 5014-5024.
    108. Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Wang, H.; Yi, H.; Li, B.; Liu, S.; Zhang, M.; Deng, R.; Fu, Y.; Li, L.; Xue, W.; Chen, S., Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem Soc Rev 2019, 48 (20), 5266-5302.
    109. Tu, W.; Xu, Y.; Yin, S.; Xu, R., Rational Design of Catalytic Centers in Crystalline Frameworks. Adv Mater 2018, e1707582.
    110. He, T.; Geng, K.; Jiang, D., Engineering Covalent Organic Frameworks for Light-Driven Hydrogen Production from Water. ACS Materials Letters 2019, 1 (2), 203-208.
    111. Esrafili, A.; Wagner, A.; Inamdar, S.; Acharya, A. A.-O., Covalent Organic Frameworks for Biomedical Applications. (2192-2659 (Electronic)).
    112. Pugazhendhi, A.; Edison, T.; Velmurugan, B. K.; Jacob, J. A.; Karuppusamy, I., Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life Sci 2018, 200, 26-30.
    113. Liu, S.; Hu, C.; Liu, Y.; Zhao, X.; Pang, M.; Lin, J., One-Pot Synthesis of DOX@Covalent Organic Framework with Enhanced Chemotherapeutic Efficacy. Chemistry 2019, 25 (17), 4315-4319.
    114. Fytory, M.; Arafa, K. K.; El Rouby, W. M. A.; Farghali, A. A.; Abdel-Hafiez, M.; El-Sherbiny, I. M., Dual-ligated metal organic framework as novel multifunctional nanovehicle for targeted drug delivery for hepatic cancer treatment. Sci Rep 2021, 11 (1), 19808.
    115. Liu, S.; Yang, J.; Guo, R.; Deng, L.; Dong, A.; Zhang, J., Facile Fabrication of Redox-Responsive Covalent Organic Framework Nanocarriers for Efficiently Loading and Delivering Doxorubicin. Macromol Rapid Commun 2020, 41 (4), e1900570.
    116. Bai, L.; Phua, S. Z.; Lim, W. Q.; Jana, A.; Luo, Z.; Tham, H. P.; Zhao, L.; Gao, Q.; Zhao, Y., Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chem Commun (Camb) 2016, 52 (22), 4128-31.
    117. Zhang, G.; Li, X.; Liao, Q.; Liu, Y.; Xi, K.; Huang, W.; Jia, X., Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nat Commun 2018, 9 (1), 2785.
    118. Anbazhagan, R.; Krishnamoorthi, R.; Kumaresan, S.; Tsai, H. C., Thioether-terminated triazole-bridged covalent organic framework for dual-sensitive drug delivery application. Mater Sci Eng C Mater Biol Appl 2021, 120, 111704.
    119. Mehr, S. H.; Depmeier, H.; Fukuyama, K.; Maghami, M.; MacLachlan, M. J., Formylation of phenols using formamidine acetate. Org Biomol Chem 2017, 15 (3), 581-583.
    120. Karak, S.; Kandambeth, S.; Biswal, B. P.; Sasmal, H. S.; Kumar, S.; Pachfule, P.; Banerjee, R., Constructing Ultraporous Covalent Organic Frameworks in Seconds via an Organic Terracotta Process. J Am Chem Soc 2017, 139 (5), 1856-1862.
    121. Wu, Y.-D.; Cui, W.-R.; Zhang, C.-R.; Liang, R.-P.; Qiu, J.-D., Regenerable, anti-biofouling covalent organic frameworks for monitoring and extraction of uranium from seawater. Environmental Chemistry Letters 2021, 19 (2), 1847-1856.
    122. Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R., Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J Am Chem Soc 2013, 135 (47), 17853-61.
    123. Mitra, S.; Sasmal, H. S.; Kundu, T.; Kandambeth, S.; Illath, K.; Diaz Diaz, D.; Banerjee, R., Targeted Drug Delivery in Covalent Organic Nanosheets (CONs) via Sequential Postsynthetic Modification. J Am Chem Soc 2017, 139 (12), 4513-4520.
    124. Chen, X.; Addicoat, M.; Irle, S.; Nagai, A.; Jiang, D., Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary pi-electronic force. J Am Chem Soc 2013, 135 (2), 546-9.
    125. Peng, L.; Guo, Q.; Song, C.; Ghosh, S.; Xu, H.; Wang, L.; Hu, D.; Shi, L.; Zhao, L.; Li, Q.; Sakurai, T.; Yan, H.; Seki, S.; Liu, Y.; Wei, D., Ultra-fast single-crystal polymerization of large-sized covalent organic frameworks. Nat Commun 2021, 12 (1), 5077.
    126. Li, X.; Qi, Y.; Yue, G.; Wu, Q.; Li, Y.; Zhang, M.; Guo, X.; Li, X.; Ma, L.; Li, S., Solvent- and catalyst-free synthesis of an azine-linked covalent organic framework and the induced tautomerization in the adsorption of U(vi) and Hg(ii). Green Chemistry 2019, 21 (3), 649-657.
    127. Lifeng Deng, J. Z. a. Y. G., Synthesis, Properties, and Their Potential Application of Covalent Organic Frameworks (COFs). 2018.
    128. Smith, B. J.; Parent, L. R.; Overholts, A. C.; Beaucage, P. A.; Bisbey, R. P.; Chavez, A. D.; Hwang, N.; Park, C.; Evans, A. M.; Gianneschi, N. C.; Dichtel, W. R., Colloidal Covalent Organic Frameworks. ACS Central Science 2017, 3 (1), 58-65.
    129. Mitra, S.; Sasmal, H. S.; Kundu, T.; Kandambeth, S.; Illath, K.; Díaz Díaz, D.; Banerjee, R., Targeted Drug Delivery in Covalent Organic Nanosheets (CONs) via Sequential Postsynthetic Modification. Journal of the American Chemical Society 2017, 139 (12), 4513-4520.
    130. Fang, Q.; Wang, J.; Gu, S.; Kaspar, R. B.; Zhuang, Z.; Zheng, J.; Guo, H.; Qiu, S.; Yan, Y., 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery. Journal of the American Chemical Society 2015, 137 (26), 8352-8355.
    131. Hao, G.; Xu, Z. P.; Li, L., Manipulating extracellular tumour pH: an effective target for cancer therapy. RSC Adv 2018, 8 (39), 22182-22192.
    132. Ortega, A. L.; Mena S Fau - Estrela, J. M.; Estrela, J. M., Glutathione in cancer cell death. (2072-6694 (Print)).
    133. Jie, X.; Shang, Y.; Chen, Z. N.; Zhang, X.; Zhuang, W.; Su, W., Differentiation between enamines and tautomerizable imines in the oxidation reaction with TEMPO. Nat Commun 2018, 9 (1), 5002.

    無法下載圖示 全文公開日期 2027/08/23 (校內網路)
    全文公開日期 2027/08/23 (校外網路)
    全文公開日期 2027/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE