簡易檢索 / 詳目顯示

研究生: 張翠園
Tsui-Yuan Chang
論文名稱: 消防防護服之設計風險考量因子權重分析之研究:以AHP為例
A Study on the Risk Factor Weightings of Firefighting Suit Design:An AHP Approach
指導教授: 盧希鵬
Hsi-Peng Lu
羅天一
Tain-Yi Luor
口試委員: 盧希鵬
Hsi-Peng Lu
羅天一
Tain-Yi Luor
黃世禎
Sun-Jen Huang
陳建雄
Chien-Hsiung Chen
嚴貞
Jen Yen
學位類別: 博士
Doctor
系所名稱: 管理學院 - 管理研究所
Graduate Institute of Management
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 134
中文關鍵詞: 消防防護服機能服風險因子AHP 層級分析法權重分析
外文關鍵詞: firefighting suit, functional clothing, risk factors, AHP model, weighting analysis
相關次數: 點閱:334下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

消防防護服為消防人員於火場救災時最重要的保護屏障;在過去幾十年裡, 台灣消防員穿著過期消防防護服的情況層出不窮,消防員的人身安全令人堪憂。 因此本研究主要目的為「探討消防防護服設計時應考量的風險因子權重排序」。 本研究分兩階段進行,第一階段邀請 5 位與消防相關工作達 15 年之專家,以深 度訪談及修正式德菲法方式進行研究構面及設計風險考量因子的確認,設計出 AHP 層級分析問卷,問卷第一階層為「防護性、舒適性、素材、版型設計與科技 性」等五大構面,第二階層歸納為 28 個設計風險考量因子。第二階段則邀請 30 位與消防相關工作達 10 年之專家,進行 AHP 問卷的資料蒐集,回收有效問卷 23 份。
研究依中華民國行政院風險管理及危機處理作業手冊訂定:可承受風險機率 80%~100%為低度危險之風險,可忽略;可承受風險機率 60%~79%為中度危 險之風險,本研究以 70%當作可承受風險值。研究結果顯示:在構面上的權重值, 防護性 42%為最高,其他依序為素材 18.6%、舒適性 17.8%、科技性 13.8%及版 型設計 7.4%。在 28 個設計風險考量因子中,高風險因子有 8 個,依序為:抗焰性 不足、抗熱性不足、穿衣順序錯誤、抗穿刺及撕裂不足、靈活性差、整體重量重、 抗水性不足及耐燃纖維缺乏。但亦有幾項排序後面的風險因子是各縣市政府消防 防護服的驗收標準,因此權重分數雖低但仍須納入考量,例如:衣領防護不足、反 光條、袖口防護不足等。本研究成果可提供給相關業者、設計師及政府單位於採 購與檢核消防防護服時,多一項安全把關之機制。


Firefighting suit is one of the most important protective barriers for firefighters during fire rescue. In the past few decades, firefighters in Taiwan have been wearing expired Firefighting suit in an endless stream, and the personal safety of firefighters has become a major concern. Therefore, the purpose of this study is to "investigate the ranking of risk factor weightings of Firefighting suit design ". This study was conducted in two phases. In the first phase, 5 experts who have worked in fire protection for 15 years was invited. The in-depth interviews and modified Delphi method were used to confirm the research dimensions and risk factors, and design the questionnaire for the AHP hierarchical analysis. The first level of the questionnaire consisted of five aspects, namely "protection, comfort, material, cutting and technology", and the second level was summarized into 28 design risk factors. In the second phase, a total of 30 experts who have worked in related fields for 10 years were invited to facilitate the data collection of the AHP questionnaire. In the end, 23 valid questionnaires were collected for further analysis.
This study was formulated in accordance with the Risk Management and Crisis Handling Operation Manual of the Executive Yuan of the Republic of China, i.e., the risks with an acceptable risk probability of 80% to 100% are considered to be of low risk, which can be ignored. Nonetheless, the risks with an acceptable risk probability of 60% to 79% are considered to be of moderate risk. In this study, 70% was regarded as the acceptable risk value. The research results showed that: in terms of the weight value of the facet, the protection is the highest at 42%, the others are material (18.6%), comfort (17.8%), technology (13.8%), and cutting (7.4%). Among the 28 design risk factors, there are 8 high risk factors in the order of insufficient flame resistance, insufficient heat resistance, putting on the gear components in the wrong order, insufficient resistance to tears or punctures, poor agility, heavy overall weight, insufficient water resistance, and lack of flame-retardant fibers. In addition, there are also several risk factors with low rankings but are the acceptable criteria for Firefighting suit by the county and city governments. Therefore, although the weighted scores are low, they must still be taken into considerations, such as insufficient collar protection,
iii
reflective strips, and insufficient cuff protection. The results of this research study can provide important design references for relevant industry, designers, and government units when purchasing Firefighting suits for being as an additional safety control mechanism.

中文摘要ii 英文摘要 iii 謝 誌 v 圖 目 錄viii 表 目 錄 ix 第壹章 緒論1 第一節 研究背景與動機1 第二節 研究問題與目的4 第三節 研究流程4 第四節 研究限制7 第貳章 文獻探討9 第一節 消防相關研究9 第二節 消防防護服相關研究 13 第三節 消防防護服設計相關文獻30 第參章 研究方法 41 第一節 研究設計 41 第二節 研究理論與應用45 第三節 研究對象 60 第四節 問卷設計 63 第五節 問卷發放與回收78 第六節 研究倫理 79 第肆章 研究結果與討論 83 第一節 設計風險指標構面 83 第二節 設計風險因子分析 84 第三節 設計風險因子權重整合分析93 第四節 綜合評述 96 第伍章 結論與建議 99 第一節 結論 99 第二節 設計風險與管理意涵101 第三節 後續研究建議103 參考文獻105 附錄121

<中文部分>
內政部消防署主計室(2021)。中華民國109年消防統計年報。新北市:內政部消防署。
朱培言(2019)。歐規消防防護衣於火場救災效能之研究—以熱防護性能為例。南華大學國際事務與企業學系歐洲研究所未出版碩士論文,嘉義縣。
呂學治(2013)。外勤消防人員消防防護衣之探討-以臺南市政府消防局為例。嘉南藥理大學職業安全衛生系未出版碩士論文,臺南市。
李文政譯(2015)。社會科學研究法:資料蒐集與分析。台北市:心理出版社。
周國村(2002)。高溫防護服飾性能與舒適性評估,絲織園地,40,p74-79
林正玄、林華泓編輯(2020)。消防白皮書。新北市:內政部消防署。
馮正民、李慧玲(2020)。由決策習慣探討AHP之評估方法。中華管理學報,1(1),21-26。https://doi.org/10.30053/CHJM.200003.0003
林里燕、周國村(2010)。消防防護衣材料熱防護及熱傳遞性能研究。紡織綜合研究期刊,20(1),P44-54。https://doi.org/10.6439/TTRJ.201001.0044
林建宏(2018)。美國Survival課程成效分析-以新北市為例。中央警察大學消防科學研究所未出版碩士論文,桃園市。
林惟崧 (2019)。消防員一套打火衣穿多年,蘋果新聞網,2019/09/29 https://tw.appledaily.com/politics/20190829/UK5MVTTV6CTCPXTJXU25NDLN64/
施博寰(2016)。自給式空氣呼吸器之可聯網伺服多功能告警安全裝置實作。亞洲大學光電與通訊所未出版碩士論文,臺中市。
香港特別行政區(2022)。香港女主任事故現場制服。(2022年5月1日取用) https://www.hkfsd.gov.hk/chi/gallery/uniform/fire/officer/officer_opp_f.html
桃園消防季刊(2020)。選擇適當的防護裝備。87, 6。
紡織產業綜合研究所(2022a)。透濕防水紡織品整合技術,2022年5月10取用。http://ttri2019.db-coder.com/tc/energy.aspx?mid=43&id=30&chk=dbd6b383-dbfa-41f2-83d2-8247c382f7c4
紡織產業綜合研究所(2022b)。環保撥水助劑技術,2022年5月10取用。http://ttri2019.db-coder.com/tc/energy.aspx?mid=43&id=29&chk=d85167e1-ad27-4697-b1a5-a8a5a483a1dd
紡織與材料工業研究中心(2015) 。紡織所推智慧衣幫助消防員,2021年5月5日取用)。 http://www.tmirc.fcu.edu.tw/Home/Literature?id=2416
袁建中、張建清、彭逸群(2005)。以德菲法預測臺灣行動電話用射頻晶片發展趨勢。行政院國家科學委員會專題研究計畫(NSC93-2416-H-009-014),未出版。
馬倩、王可(2013)。化學防護服及新材料應用。紡織科技進展,4,10-12。
國家發展委員會(2020)。行政院及所屬各機關風險管理及危機處理作業手冊。https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvMC8xMzg5My8xNTAyNGFlNC0wNGY3LTRlYTEtOTMwNS0xODI0YWM2YjhkZTcucGRm&n=6KGM5pS%2F6Zmi5Y%2BK5omA5bGs5ZCE5qmf6Zec6aKo6Zqq566h55CG5Y%2BK5Y2x5qmf6JmV55CG5L2c5qWt5omL5YaKLnBkZg%3D%3D&icon=..pdf
張育銓(2016)。結合心率偵測實作裝置與物聯網平台於消防人員之生理訊號監控。亞洲大學光電與通訊所未出版碩士論文,臺中市。
張俊陽、楊禎為、吳敏筑(2019)。建構商業智慧委外承包商評選指標之研究。臺大管理論叢,29(1),171-200。
張偉瑤、曾慶光、李貴琪(2008)。以心率變異分析探討穿著涼爽織物於美式消防防護衣時之舒適性。華岡紡織期刊,15(2),173 -186。https://doi.org/10.29984/JHGT.200806.0010 DOI
張紹勳(2012)。模糊多準則評估法及統計。臺北市:五南。
張筠娸、林毓瑋、林紀宏、周國村(2008)。消防防護衣火焰衝擊防護性之研究。華岡紡織期刊,15(4),345-349。https://doi.org/10.29984/JHGT.200812.0003
張緯良(2018)。人力資源管理。臺北市:雙葉書廊。
陳信凱(2016)。結合消防防護衣及穿戴裝置實現一種消防人員於煙霧場域行動之空間建構方法。亞洲大學光電與電資工程學系未出版碩士論文,臺中市。
陳思豪(2015)。6年沒檢修北市消防防護衣千件竟過期,蘋果日報2015.4.11,2021年5月30取用。https://tw.appledaily.com/headline/20150411/6MAOJUJAUL5ETUX6P5FSODA33Q/
葉晉嘉、翁興利、吳濟華(2007)。德菲法與模糊德菲法之比較研究。調查研究-方法與應用,21,31-58。
臺中市政府。除汙區域劃分圖。2022年5月2日取用。https://www.epb.taichung.gov.tw/media/290912/772713324816.pdf
臺中市政府主計處(2021)。臺中市總決算暨附屬單位決算及綜計表審查報告。2021年10月1日取用。https://www.dbas.taichung.gov.tw/16955/Lpsimplelist
劉協成(2012)。德懷術之理論與實務初探。教師之友,47(4),91-99。
鄧振源(2012)。多準則決策分析:方法與應用。臺北市:鼎茂圖書。
鄧振源、曾國雄(1989a),層級分析法(AHP)的內涵特性與應用(上),中國統計學報,27 (6),13707-13724。
鄧振源、曾國雄(1989b),層級分析法(AHP)的內涵特性與應用(下),中國統計學報,27 (7),13767-13786。
鄭有竣(2020)。應用多準則決策方法提升消防員救災安全之研究-以嘉義縣消防局為例。國立成功大學工業與資訊管理學系未出版碩士論文,台南市。
薛宜家、陳保羅(2015)。消防員投訴 消防防護衣過期.無檢修,公視新聞網。2015.10.28。2021年5月30取用。 https://news.pts.org.tw/article/294603
文崇一、楊國樞(2000)。訪問調查法。社會及行為科學研究法下冊。台北:東華。
王文科(2001)。教育研究法。台北:五南出版社。

<英文部分>
Abrard, S; Bertrand, M; De Valence, T; Schaupp, T. (2021). Physiological, cognitive and neuromuscular effects of heat exposure on firefighters after a live training scenario. International Journal of Occupational Safety and Ergonomics, 27(1). 185-193. https://doi.org/10.1080/10803548.2018.1550899.
American Fire Protection Association (2022)。Standard for protective equipment or clothing for structural firefighting and fire access。Retrieved 10. May, 2022, from https://marinatextil.com/textile-standard/nfpa-1971-protection-fabric-standard
Barker, J., Boorady, L.M., Lee, Y.A., Lin, S.H., Cho, E., Ashdown, S. P. (2013). Exploration of Firefighter Turnout Gear Part 1: Identifying Male Firefighter User Needs. Journal of Textile and Apparel, Technology and Management, 8(1), 1-13.
Barker, R.L., Guerth-Schacher, C., Grimes, R., Hamouda, H. (2006). Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures. Textile Research Journal, 76(1), 27–31. https://doi.org/10.1177/0040517506053947.
Berglin, L. (2013). Smart textiles and wearable technology. Högskolan i Borås.
Bolstad-Johnson, D. M., Burgess, J. L., Crutchfield, C. D., Storment, S., Gerkin, R., & Wilson, J. R. (2000). Characterization of firefighter exposures during fire overhaul. AIHAJ-American Industrial Hygiene Association, 61(5), 636-641.
Brandt-Rauf, P. W., Fallon, L. F., Tarantini, T., Idema, C., & Andrews, L. (1988). Health hazards of fire fighters: exposure assessment. Occupational and Environmental Medicine, 45(9), 606-612.
Bruce S. Cadarette, Samuel N. Cheuvront, Margaret A. Kolka, Lou A. Stephenson, Scott J. Montain & Michael N. Sawka (2006) Intermittent microclimate cooling during exercise-heat stress in US army chemical protective clothing, Ergonomics, 49(2), 209-219, https://doi.org/ 10.1080/00140130500436106.
Bruce-Low, S., Cotterrell, D., Jones, G. (2007). Effect of wearing personal protective clothing and self-contained breathing apparatus on heart rate, temperature and oxygen consumption during stepping exercise and live fire training exercises. Ergonomics, 50(1), 80–98. https://doi.org/10.1080/00140130600980912.
Campbell, R. (2021). Firefighter Injuries on the Fireground, October 2021, MA: National Fire Protection Association. Retrieved 10. May, 2022, from https://www.nfpa.org/News-and-Research/Data-research-and-tools/Emergency-Responders/Patterns-of-firefighter-fireground-injuries
Chen, T., Chen, W., Wang, M. (2014). The effect of air permeability and water vapor permeability of cleanroom clothing on physiological responses and wear comfort. Journal of Occupational and Environmental Hygiene, 11(6):36-76. https://doi.org/10.1080/15459624.2013.875181.
Cochrane, C., Meunier, L., Kelly, F. M., & Koncar, V. (2011). Flexible displays for smart clothing: Part I—Overview. Indian Journal of Fibre and Textile Research. 36(4), 422-428.
Cui, H., Li, Y., Zhao, X., Yin, X., Yu, J. & Ding, B. (2017). Multilevel porous structured polyvinylidene fluoride/polyurethane fibrous membranes for ultrahigh waterproof and breathable application. Composites Communications, 6(12), 63-67. https://doi.org/10.1016/j.coco.2017.10.002.
Duan, X., Srinivasakannand, C. Wang, X., Wang, F., Liu, X. (2017). Synthesis of activated carbon fibers from cotton by microwave induced H3PO4 activation. Journal of the Taiwan Institute of Chemical Engineers.70, 374-381. https://doi.org/10.1016/j.jtice.2016.10.036.
Dunn, W. N. (2016). Public policy analysis (5th ed.). New York, NY: Routledge.
Epstein, Y., Heled, Y., Ketko, I., Muginshtein, J., Yanovich, R., Druyan, A., & Moran, D. S. (2013). The effect of air permeability characteristics of protective garments on the induced physiological strain under exercise-heat stress. The Annals of occupational hygiene, 57(7), 866–874. https://doi.org/10.1093/annhyg/met003.
Evans, K M, Hardy, J K. (2004). Predicting solubility and permeation properties of organic solvents in Viton glove material using Hansen's solubility parameters. Journal of Applied Polymer Science, 93(6), p88-98. https://doi.org/10.1002/app.20841.
Fahy, R.F., LeBlanc, P.R. & Molis, J. (2017). Firefighter Fatalities in the United States, 2016. National Fire Protection Association, Quincy, MA, Jul. Published on July 1, 2017.
Fan, YF; Zhu, XD; Sui, HL; Sun, HT; Wang, ZM. (2019). Design and Application of Toxic and Harmful Gas Monitoring System in Fire Fighting. SENSORS, 19(2), 369. https://doi.org/10.3390/s19020369.
Festag, S. (2021). The Statistical Effectiveness of Fire Protection Measures: Learning from Real Fires in Germany. Fire Technology, 57(4), 1589-1609. https://doi.org/10.1007/s10694-020-01073.
firefighter turnout SABA gear (Photo/USAF. Retrieved 15. May, 2021, from https://www.firerescue1.com/personal-protective-equipment-ppe/articles/5-strategies-to-extend-the-life-of-your-firefighter-gear-AmlylyhhLc5rmsrA/
Firefighters at the scene of disaster relief, USA. Retrieved 15. May, 2021, from https://www.pinterest.com.mx/pin/ATxomSYfSbedkH5oLMzYxqp7n1r-PQ_eFj6JxXSTNx6pEyUZneYpsbU/
Firefighters rescue the scene, Germany. Großeinsatz: Haus in der Jahnstraße brannte lichterloh, Log In Register. Der Schulzendorfer. / 12. December 2020. Retrieved 15. May, 2021, from https://www.schulzendorfer.de/grosseinsatz-haus-in-der-jahnstrasse-brannte-lichterloh/
Fonseca, A; Neves, SF; Campos, JBLM. (2021). Thermal performance of a PCM firefighting suit considering transient periods of fire exposure, post - fire exposure and resting phases. Applied Thermal Engineering, 182, Article Number115769. https://doi.org/10.1016/j.applthermaleng.2020.115769.
Gates, J. (2000). Phase change material home page. Retrieved 15. May, 2021, from http://freespace. virgin.net/m.eckert/.
Genovesi, M. G. (1980). Effects of smoke inhalation. Chest, 77(3), 335-336.
Green, J. (2013). The Production and Characterization of a Multi-functional Fiber-based Composite for use in Protective Clothing. Clemson University.
Griffith, D.A., Morris, E.S, & Thakar, V. (2016). Spatial Autocorrelation and Qualitative Sampling: The Case of Snowball Type Sampling Designs, Annals of the American Association of Geographers, 106(4), 773-787, https://doi.org/ 10.1080/24694452.2016.1164580
Guidotti, T. L., & Clough, V. M. (1992). Occupational health concerns of firefighting. Annual review of public health, 13(1), 151-171.
Guo, T., Shang, B., Duan, B., Luo, X., (2015). Design and testing of a liquid cooled garment for hot environments. Journal of Thermal Biology, 49(4), 47-54. https://doi.org/10.1016/j.jtherbio.2015.01.003.
Hartman, A. (1981). Reaching consensus using the Delphi technique. Educational Leadership, 38(6), 495-497.
Havenith, G. & van Middendorp, H. (1990). The relative influence of physical fitness, acclimatization state, anthropometric measures and gender on individual reactions to heat stress. European journal of applied physiology and occupational physiology, 61(5), 419-427.
Havenith, G. (1999). Heat balance when wearing protective clothing. The Annals of Occupational Hygiene, 43(5), 289–296. https://doi.org/10.1093/annhyg/43.5.289.
Havenith, G., den Hartog, E. & Martini, S. (2011). Heat stress in chemical protective clothing: porosity and vapour resistance. Ergonomics, 54(5), 497–507. https://doi.org/10.1080/00140139.2011.558638.
Holmer, I (2006). Protective clothing in hot environments. Industrial Health, 44(3), 404–413.
Hsiao, H., Whitestone, J., Kau, T.Y., Whisler, R., Routley, J.G., Wilbur, M. (2014). Sizing firefighters: method and implications. Human Factors. 56(5), 873-910. https://doi.org/10.1177/0018720813516359.
Ji, Y., Li, Y., Chen, G., & Xing, T. (2017). Fire-resistant and highly electrically conductive silk fabrics fabricated with reduced graphene oxide via dry-coating. Materials & Design, 133, 528-535. https://doi.org/10.1016/j.matdes.2017.08.006.
Jin, L., Cao, M.L., Yu, W., Hu, JY., Yoon. KJ., Park, PK., Li, y. (2018) New Approaches to Evaluate the Performance of Firefighter Protective Clothing Materials. Fire Technol. 54, 1283–1307. https://doi.org/10.1007/s10694-018-0730-2.
Kahn, S. A., Patel, J. H., Lentz, C. W., & Bell, D. E. (2012). Firefighter burn injuries: predictable patterns influenced by turnout gear. Journal of burn care & research, 33(1), 152-156.
Kilinc, F. S. (Ed.). (2013). Handbook of Fire Resistant Textiles. Woodhead Publishing Limited. PA. USA.
Kim, M; Hwang, I; Seong, M; Choi, J; Kim, M; Lee, HD; Shin, KJ; Son, H; Sohn, H; Choi, J. (2020). Multifunctional Smart Ball Sensor for Wireless Structural Health Monitoring in a Fire Situation l. Sensors, 20(15), 4328. https://doi.org/10.3390/s20154328.
Kirkpatrick, D. L. (1959). Techniques for Evaluation Training Programs. Journal of the American Society of Training Directors, 13, 21-26.
Koo, K., Park, Y., Choe, J., Kim, E. (2008). The application of microencapsulated phasechange materials to nylon fabric using direct dual coating method. Journal of Applied Polymer Science, 108, 2337–2344. https://doi.org/10.1002/APP.27634.
Kumar, R. (2005). Research Methodology: A Step-by-Step Guide for Beginners. London: SAGE. UK. ISBN 978-1-5264-4989-4.
Lah, A. Š., Fajfar, P., Kugler, G. & Rijavec, T. (2019). A NiTi alloy weft knitted fabric for smart firefighting clothing. Smart Materials and Structures, 28(6), 065014.
Lawson, L.K., Crown, E.M., Ackerman, M.Y., Dale, J.D. (2004). Moisture effects in heat transfer through clothing systems for wildland firefighters. International Journal of Occupational Safety and Ergonomics, 10(3), 227–238. https://doi.org/10.1080/10803548.2004.11076610.
Lee, J.Y., Yamamoto, Y., Oe, R., Son, S.Y., Wakabayashi, H., Tochihara, Y., (2014). The European, Japanese and US protective helmet, gloves and boots for firefighters: thermoregulatory and psychological evaluations. Ergonomics, 57(8), 1213-1221. https://doi.org/10.1080/00140139.2014.914578.
Lee, Y. M., & Barker, R. L. (1986). Effect of moisture on the thermal protective performance of heat-resistant fabrics. Journal of Fire Sciences, 4(5), 315-331.
Li, D. (2015). Study on biochemical isolation protective clothing of polytetrafluoroethylene bidirectional tensile film. Shandong Chemical Industry, 44(13), 53-57.
Lu, K. & Dai, H. (2020). Research progress of chemical protective clothing. Journal of Textile Research, 41(5), 191-196. https://doi: 10.13475/j.fzxb.20190504606.
Lu, Y.H., Wang, L.J., Gao, Q. (2018). Predicting tensile strength of fabrics used in firefighters' protective clothing after multiple radiation exposures. The Journal of Textile Institute. 109, 338–344. https://doi.org/10.1080/00405000.2017.1345603.
Marshall, C. & Rossman, G. B. (2016). Designing Qualitative Research, 6 ed. SAGE publications, Los Angeles, USA. ISBN 978-1-4522-7100-2.
McCarthy, L.K., di Marzo, M (2012). The Application of Phase Change Material in Fire Fighter Protective Clothing. Fire Technol, 48, 841–864. https://doi.org/10.1007/s10694-011-0248-3.
McLellan, T. M., & Daanen, H. A. M. (2012). Heat strain in personal protective clothing: challenges and intervention strategies. Intelligent Textiles and Clothing for Ballistic and NBC Protection (99-118). Springer, Dordrecht. ISBN: 978-94-007-0576-0.
McLellan, T. M., & Selkirk, G. A. (2004). Heat stress while wearing long pants or shorts under firefighting protective clothing. Ergonomics, 47(1), 75-90.
McQuerry, M., Kwon, C., Johnson, H. (2019). A critical review of female firefighter protective clothing and equipment workplace challenges. Research Journal of Textile and Apparel, 23(2), 94-110. https://doi.org/10.1108/RJTA-01-2019-0002.
Meena, M., Kerketta, A., Tripathi, M., Roy, P., Jacob, J. (2022). Moisture barrier layer with supplemental chemical and biological protective functionality for firefighting clothing applications. Journal of Industrial Textiles, published online: January 18, 2022. https://doi.org/10.1177/15280837211073360.
Meena, M., Kerketta, A., Tripathi, M., Roy, P., Jacob, J. (2022). Moisture barrier layer with supplemental chemical and biological protective functionality for firefighting clothing applications. Journal of Industrial Textiles. January 2022. https://doi.org/10.1177/15280837211073360.
Mell, W.E., Lawson, J.R. (2000). A heat transfer model for firefighters’ protective clothing. Fire Technology, 36(1), 39–68. https://doi.org/10.1023/A:1015429820426.
Milton Training Burn. Retrieved 15. May, 2021, from http://www.smfronline.org/milton-training-burn.html
Mortazavi, SB., Mahabadi, HA; Saber, E., Talarposhti, SJH., Zandi, A., Abbaspour, S. (2018). Survey of Blood and Urine Biological at Petrochemical firefighters. Asian Journal of Pharmaceutics, 12(2), 576-579. https://doi.org/10.22377/ajp.v12i02.2395 .
Murry, J. W. & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The Review of Higher Education, 18(4), 423-436.
Murry, J. W. & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The Review of Higher Education, 18(4), 423-436.
National Fire Protection Association (2022). NFPA 1971. Standard on protective ensembles for structural firefighting and proximity firefighting, Quincy, MA: National Fire Protection Association.
Nayak, R., Houshyar, S. & Padhye, R. (2014). Recent trends and future scope in the protection and comfort of fire-fighters’ personal protective clothing. Fire Science Reviews, 3, 4. https://doi.org/10.1186/s40038-014-0004-0.
Neto, JLC., Calheiros, DD., Calheiros, DD., Neto, TD., Pinto, MP., da Rocha, DF. (2019). Levels of physical activity and associated factors between military policemen and firemen. Work-A Journal of Prevention Assessment & Rehabilitation, 62(3), 515-521. https://doi.org/10.3233/WOR-192886.
Orr, R; Simas, V., Canetti, E., Schram, B. (2019). A Profile of Injuries Sustained by Firefighters: A Critical Review. International Journal of Environmental Research and Public Health, 16(20). 3931. https://doi.org/10.3390/ijerph16203931.
Orr, R; Simas, V; Canetti, E; Maupin, D; Schram, B. (2019). Impact of Various Clothing Variations on Firefighter Mobility: A Pilot Study. Safety, 5(4), 78. https://doi.org/10.3390/safety5040078.
OSHA First Responder Awareness with Spill Cleanup Training。Retrieved 1. May, 2021, from https://www.hazmatschool.com/osha-first-responder-awareness-with-spill-cleanup-training/.
PCM Thermal Solutions, Inc. (2008). Retrieved 15. May, 2021, from http://www.pcm-solutions.com/.
Phelps, HL., Watt, SD., Sidhu, HS., Sidhu, LA. (2019). Using Phase Change Materials and Air Gaps in Designing Fire Fighting Suits: A Mathematical Investigation. Fire Technology, 55, 363-381. https://doi.org/10.1007/s10694-018-0794-z.
Phromphen, P. (2015). The permeation and moisture transmission properties of a thermosensitive membrane barrier for chemical protective clothing. PhD thesis, University of Leeds.
Prasad, K., Twilley, W. H., & Lawson, J. R. (2002). Thermal performance of fire fighters' protective clothing. Fire Research Division. Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg, MD USA.
Roguski, J., Stegienko, K., Kubis, D., Blogowski, M. (2016). Comparison of Requirements and Directions of Development of Methods for Testing Protective Clothing for Firefighting. Fibres & Textiles in Eastern Europe, 24(5), 132-136. https://doi.org/10.5604/12303666.1215538.
Rossi, R. M., & Zimmerli, T. (1996). Influence of humidity on the radiant, convective and contact heat transmission through protective clothing materials. ASTM special technical publication, 1237, 269-280. https://doi.org/10.1520/STP14074S.
Rossi, R.M., Bolli, W. & Stämpfli, R. (2008) Performance of Firefighters’ Protective Clothing After Heat Exposure, International Journal of Occupational Safety and Ergonomics, 14(1), 55-60. https://doi.org/10.1080/10803548.2008.11076747.
Saaty, T. L. (1992). The analytic hierarchy process: planning, priority setting, resource allocation (2nd ed.). Pittsburgh, PA: RWS Publications.
Saaty, T.L. (1980). Multicriteria Decision Making: The Analytical Hierarchy Process, McGraw-Hill: New York, NY, USA.
Salim, F., Prohasky, D., Belbasis, A., Houshyar, S., & Fuss, F. K. (2014). Design and evaluation of smart wearable undergarment for monitoring physiological extremes in firefighting. In Proceedings of the 2014 ACM International Symposium on Wearable Computers: Adjunct Program. pp. 249-254. https://doi.org/10.1145/2641248.2666716.
Scott R.A. (2005). Textiles for Protection. Woodhead Publishing. Cambridge, UK.
Shaid, A., Wang, L., Padhye, R. (2018). Textiles for Firefighting Protective Clothing: Performance, Protection, and Comfort. Firefighters’ Clothing and Equipment, December 2018. 1-30. https://doi.org/10.1201/9780429444876-1.
Shaw, A., Coleone-Carvalho, A.C., Hollingshurst, J., Draper, M., Neto, J.G.M. (2017). Development of a new test cell to measure cumulative permeation of water-insoluble pesticides with low vapor pressure through protective clothing and glove materials. Industrial Health, 55(6), 555-563. https://doi:10.2486/indhealth.2017-0054.
Shin, Y., Yoo, D.I., Son, K. (2005). Development of thermoregulating textile materials with microencapsulated Phase Change Materials (PGM). IV. Performance properties and hand of fabrics treated with PCM microcapsules. Journal of Applied Polymer Science, 97(3), 910-915. https://doi.org/10.1002/app.21846.
Slater, K. (1977). Comfort Properties of Textiles, Textile Progress, 9(4), 1-70. https://doi.org/10.1080/00405167.1977.10750095.
Song, G., Chitrphiromsri, P., Ding, D. (2008). Numerical Simulations of Heat and Moisture Transport in Thermal Protective Clothing Under Flash Fire Conditions, International Journal of Occupational Safety and Ergonomics, 14:1, 89-106, https://doi.org/10.1080/10803548.2008.11076752.
Stoppa, M., & Chiolerio, A. (2014). Wearable electronics and smart textiles: A critical review. sensors, 14(7), 11957-11992. https://doi.org/10.3390/s140711957.
Taiwan K. K. corp. Ultra Light Fire Fighting Suit, Retrieved 1. May, 2021, from https://www.kanox.com.tw/en/product/Ultra-Light-Fire-Fighting-Suit/Rev.html
Tehrani-Bagha, A. R. (2019). Waterproof breathable layers–a review. Advances in colloid and interface science, 268, 114-135. https://doi.org/10.1016/j.cis.2019.03.006.
Torvi, D.A., Dale, J.D. (1998). Effects of variations in thermal properties on the performance of flame resistant fabrics for flash fires. Textile research journal, 68(11), 787-796.
Treitman, R. D., BURGESS, W. A., GOLD, A. (1980). Air contaminants encountered by firefighters. American Industrial Hygiene Association Journal, 41(11), 796-802.
U.S. NASA Center for Aero Space Information, (2009). Accessed December 20, 2021. https://www.nasa.gov/offices/ipp/network/casi.html
Veghte, J. H. (1987). Effect of moisture on the burn potential in fire fighters' gloves. Fire technology, 23(4), 313-322.
Wang, Y., Ma, Y., Chen, R., Su, Y. (2021), Thermal protective performance of firefighting protective clothing incorporated with phase change material in fire environments, FAM Fire and Materrials, 45(2), 250-260. https://doi.org/10.1002/fam.2928.
Witt, M; Stelcer, B; Czarnecka-Iwanczuk, M. (2018). Stress coping styles in firemen exposed to severe stress. Psychiatr Polska, 52(3), 543-555. https://doi.org/10.12740/PP/73837.
Won, AY; Yun, C. (2021). The Effects of Laundering on the Protective Performance of Firefighter Clothing. Fibers and Polymers, 22, 3232-3239. https://doi.org/10.1007/s12221-021-0861-9.
Xu, K., Feng, j., Zhong, T., Zheng, Z., Chen, T. (2015). Effects of volatile chemical components of wood species on mould growth susceptibility and termite attack resistance of wood plastic composites. International Biodeterioration & Biodegradation, 100(3), 106-115. https://doi.org/10.1016/j.ibiod.2015.02.002.
Yang, Z., Yang, G., Yang, B., Wang, C., Ding, S. (2015). Determination of permeation resistance of chemical protective clothing to dimethyl sulfate by solution collection-gas chromatographic Method. Chinese Journal of Analytical Chemistry, 43(6), 924-928.
Zalba, B., Marı´n, J.M., Cabeza, L.F., Mehling H. (2003). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 23(3), 251–283. https://doi.org/10.1016/S1359-4311(02)00192-8.
Zhang, GY; Lu, LH; Shi, CL; Qian, XD. (2020). The study of coupling effects of humidity-heat on the protection performance of protective clothing for fire fighting. Fire and Materials, 44(7), 923-934. https://doi.org/10.1002/fam.2895.
Zhu, JS; Li, W; Lin, D; Cheng, HY; Zhao, G. (2020). Intelligent Fire Monitor for Fire Robot Based on Infrared Image Feedback Control. Fire Technology, 56(5), 2089-2109. https://doi.org/10.1007/s10694-020-00964-4.

無法下載圖示 全文公開日期 2024/08/29 (校內網路)
全文公開日期 2024/08/29 (校外網路)
全文公開日期 2024/08/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE