簡易檢索 / 詳目顯示

研究生: 陳彥彰
Yan-Cheng Chen
論文名稱: 亥姆霍茲共振器應用於管路風機之實驗與模擬整合研究
An Integrated Numerical and Experimental Investigation for Helmholtz Resonator Applied on In-line Fan
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
none
楊旭光
none
郭振華
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 144
中文關鍵詞: 亥姆霍茲共振器管路風機氣動力噪音數值模擬
外文關鍵詞: Helmholtz Resonator, Inline Fan, Acoustics Noise, Numerical Simulation
相關次數: 點閱:258下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 斜流式風扇產生之壓力比軸流式風扇大,其壓力足以克服管路系統中
    之高阻抗,亦可提供充足之空氣流量,因此近年來深受喜愛並常應用於家
    用管路風機;但風扇的使用總是伴隨著惱人的噪音問題,為解決噪音問題
    ,學者曾提出使用共振器來抑制風扇所造成的噪音。但因管路風機結構複
    雜與空振腔尺寸過大的關係,習用的λ/4共振器不易裝配於管路風機上,
    為突破此困難,本研究將採用亥姆霍茲共振器來進行管路風機之窄頻帶噪
    音的降噪,並且利用不同的配置方式以及改變操作環境進行比較,以提供
    將實際亥姆霍茲共振之減噪應用參考。首先利用CFD模擬軟體進行基準風
    機的流/聲場模擬,探討了解其流場與噪音之連動關係,找出風機的最大
    噪音源,並且將亥姆霍茲共振器裝於最大噪音源進行降噪;隨後針對此具
    共振器之風機進行流場與噪音的數值模擬,藉由結果確認共振器風機降噪
    的效果。同時,更透過CNC加工技術製作共振器,以及利用3D列印進行
    複雜的風機葉輪與外殼製作,接著搭配基準風扇進行相關性能實驗進行,
    透過量測結果用來驗證數值模擬準確度。
    由裝配亥姆霍茲共振器的風機實驗可得知,降噪效果最高可以降特徵


    It is well known that mixed-flow fan not only generates the required
    pressure to overcome the high resistance of duct system, but also provides
    sufficient airstream to fulfill the need of engineering applications. Hence, the
    mixed-flow impeller has become the favorite choice for the inline-fan design.
    Nevertheless, the annoying noise caused by the inline fan is the major obstacle
    in promoting its utilization and becomes the task of this thesis. To solve this
    problem, the λ/4 resonantor was proposed to decrease fan noise by the scholars;
    however, its implement is restricted by the complicate flow structure of inline
    fan and the big size of λ/4 resonator. Therefore, this research intends to improve
    and analyze the flow-induced noise for the inline fan with Helmholtz resonator
    by combining the numerical simulation and the experimental technique. At first,
    the flow and acoustic fields associated with the fan are simulated and analyzed
    via the CFD simulation, then FFT is applied to measure the noise inside a semianechoic
    chamber. Subsequently, a thorough understanding on the aerodynamic
    and acoustic features of this mixed-flow fan is achieved.
    Furthermore, to reduce the fan noise, a set of Helmholtz resonators applied
    on this mixed-flow fan is designed, manufactured, and installed on the fan for
    executing the aerodynamic and acoustic performance evaluations within AMCA VI
    test chamber and semi-anechoic chamber, respectively. Consequently, the
    numerical calculations can be verified according to these experimental results.
    Furthermore, the flow-induced-noise reduction due to the Helmholtz resonator
    is examined and discussed carefully by both CFD and experimental techniques.
    According to the experiment results, for the Helmholtz design on the single
    frequency, the maximum noise reduction is attained as high as 6.9 dBA on its
    blade passage frequency. Also, the trend and deviation between CFD and test
    results are well correlated and within an acceptable range. In addition, for the
    use of Helmholtz resonators designed for two BPF frequencies, the best noise
    reductions are recorded satisfactorily at 7.1 dBA and 6.5dBA on its 1st and 2nd
    BPF, respectively. Regarding the reduction variations on different operation
    points, the measured results indicate that an obvious noise reduction is observed
    over the range from medium to high flow rates, while no significant reduction is
    found under the low-flow-rate situation. In summary, the accomplishment of
    this study provides a systematic and comprehensive scheme of noise reduction
    for the in-line fan with the implement of Helmholtz resonator.

    第一章 緒論........................................................................... 1 1.1 前言 ......................................................................................... 1 1.2 斜流式管路風機 ..................................................................... 5 1.3 文獻回顧 ................................................................................. 8 1.3.1 風機噪音理論 ............................................................ 10 1.3.2 數值模擬 .................................................................... 12 1.3.3 共振器理論 ................................................................ 14 1.4 研究動機與目的 ................................................................... 17 1.5 研究流程 ............................................................................... 19 第二章 風機噪音及共振器介紹 ......................................... 24 2.1 風機之氣動噪音 ................................................................... 24 2.1.1 窄頻帶噪音 ................................................................ 30 2.1.2 寬頻帶噪音 ................................................................ 32 2.2 共振器介紹及設計參數 ........................................................ 34 2.2.1 共振器原理 ................................................................ 34 2.2.2 相關參數規劃 ............................................................ 42 第三章 數值方法 ................................................................. 44 3.1 統御方程式 ........................................................................... 44 3.2 紊流模式 ............................................................................... 47 3.2.1 雷諾數平均數值模擬法 ............................................. 48 3.2.2 大尺度渦漩模擬法 .................................................... 51 3.2.3 聲學模式 .................................................................... 52 3.3 數值計算方法 ....................................................................... 56 3.3.1 離散化方程式 ............................................................ 58 3.3.2 上風差分法 ................................................................ 60 3.3.3 速度與壓力耦合 ........................................................ 61 3.4 邊界條件與收斂判定法則 .................................................... 63 第四章 管路風機與共振器模擬 ......................................... 68 4.1 基準風扇之模擬 ................................................................... 68 4.1.1 基準風扇模型之建立................................................. 70 4.1.2 數值模型網格建立 .................................................... 72 4.1.3 基準風機結果 ............................................................ 75 4.2 共振器設計參數 ................................................................... 87 4.3 裝配共振器之聲壓模擬結果 ................................................ 91 第五章 實驗量測與結果分析 ............................................. 98 5.1 風機實驗設備介紹 ............................................................... 98 5.1.1 噪音量測設備及儀器................................................. 99 5.1.2 風扇性能量測設備及儀器 ....................................... 105 5.2 原型實驗結果 ..................................................................... 110 5.3 加入共振器後實驗結果 ...................................................... 119 5.3.1 特徵頻率噪音抑制實驗 ........................................... 119 5.3.2 不同操作點下進行噪音測試 ................................... 132 第六章 結論與建議 ........................................................... 137 6.1 結論 ..................................................................................... 137 6.2 建議 ..................................................................................... 139 參考文獻 ................................................................................ 141

    [1] Smarthome Pro, http://www.smarthomepro.com/3011.html .
    [2] ANSI/AMCA Standard 210-99 (ANSI/ASHRAE 51-1999), “Laboratory
    Method of Testing Fans for Aerodynamic Performance Rating,” Air
    Movement and Control Association, Inc., 1999.
    [3] CNS 8753, “Determination of Sound Power Level of Noises for Fan,
    Blower, and Compressors,” Chinese National Standard, 1999.
    [4] Bleier, F. P., “Fan Handbook: Selection, Application, and Design ”,
    McGraw Hill, 1997.
    [5] 甫佳電器 http://www.fuchia.tw/fuchia/blog/?p=2251
    [6] Zeller, W. and Stang, H., “Predetermination of the Axial-Flow Fans,”
    Heizung-Luftung-Haustchnik, Vol. 9, No. 12, 1957.
    [7] Zeller, W., “Conerning Mathematical Treatment of Noise Behaviour in
    Fans for Air Conditioning Plants,” VID-Berichte, No. 38, 1959.
    [8] Huebner, G., “Noise Generated by Centrifugal Fans,” SiemensZeitschrift,
    Vol. 8, pp. 145-155, 1959.
    [9] Schlichting, H., “Application of the Boundary Layer Theory to Flow
    Problems of Turbo Machines,” Siemens-Zeitschrift, Vol. 33, No. 7, pp.
    74-82, 1959.
    [10] Neise, W., “Noise Reduction in Centrifugal Fans: a Literature Survey,”
    Journal of Sound and Viberation, Vol. 45, No.3, pp. 375-403,1976.
    [11] Fukano, T. and Takamatsu, Y., “The Effects of Tip Clearance on
    The Noise of Low Pressure Axial and Mixed Flow Fans”, Journal of
    Sound and Vibration, Vol. 105, No. 2, pp. 291-308, 1986.
    [12] Lighthill, M. J., “On Sound Generation Aerodynamically-Ⅰ.General
    Theory,” Proc. Roy. Soc. London 211, pp. 564-587, 1952.

    無法下載圖示 全文公開日期 2019/12/04 (校內網路)
    全文公開日期 2024/12/04 (校外網路)
    全文公開日期 2019/12/04 (國家圖書館:臺灣博碩士論文系統)
    QR CODE