簡易檢索 / 詳目顯示

研究生: 李柏達
Bo-Da Li
論文名稱: 竹節鋼筋於鋼筋混凝土之直線握裹行為研究
Study on Straight Bond Behavior of Deformed Bars in Reinforced Concrete
指導教授: 林克強
Ker-Chun Lin
口試委員: 鄭敏元
Min-Yuan Cheng
李宏仁
Hung-Jen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 200
中文關鍵詞: 竹節鋼筋握裹行為劈裂指數鋼筋表面幾何性質鋼筋直線伸展長度預鑄工法旋楞鋼管
外文關鍵詞: deformed bars, bond behavior, splitting index, surface geometry characteristic of deformed bars, straight development length for deformed bars, prcast method, steel corrugated duct
相關次數: 點閱:315下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

過去國內對於螺紋節鋼筋於鋼筋混凝土中之握裹行為研究顯示,鋼筋之握裹性能與鋼筋表面節高與節距比值Rr值、混凝土強度、保護層厚度及橫向圍束鋼筋配置等有關,而鋼筋表面Rr值更是直接影響鋼筋所能發揮之握裹強度,美國ACI 408委員會亦建議竹節鋼筋之Rr值應介於0.1至0.14間。
本研究為探討竹節鋼筋於鋼筋混凝土中之直線握裹行為,共進行20組梁構件鋼筋握裹試驗,試體採用之鋼筋與混凝土強度均分別為420 MPa與42 MPa,本研究主要變動之參數為鋼筋表面節高與節距比值Rr值與試體配置之橫向鋼筋間距,固定鋼筋中心至試體頂面及側面距離(cb),藉由改變橫向圍束鋼筋量(Ktr)調整劈裂指數,以了解劈裂指數變化對於竹節鋼筋握裹行為之影響。期透過本研究之試驗結果,能夠建議一符合現行規範之竹節鋼筋Rr合理下限值,並提出符合竹節鋼筋之建議直線伸展長度公式。另外針對預鑄工法中所使用之旋楞鋼管進行握裹試驗,共進行36組直接拉拔試驗,主要探討配置旋楞鋼管試體所發揮之握裹強度是否能與未配置旋楞鋼管試體相同甚至更高,以確保旋楞鋼管使用於預鑄工法中之握裹性能。主要變動之參數為鋼筋直徑與旋楞鋼管直徑,試體所配置之混凝土強度、砂漿強度及鋼筋強度分別為80 MPa、120 MPa及490 MPa。
本研究之試驗結果顯示,當劈裂指數大於現行規範所限制之2.5上限值時,破壞模式仍為劈裂破壞,且試驗結果計算之握裹應力亦隨劈裂指數增加而提升,因此認為劈裂指數之上限值應能適當放寬,較能符合竹節鋼筋之握裹行為。而鋼筋表面Rr值部分為影響鋼筋握裹強度之重要因素,且隨橫向鋼筋量增加其影響效果將越趨明顯,透過回歸分析顯示,竹節鋼筋表面Rr值應至少大於0.087較能符合ACI 318-14規範之握裹應力需求。本研究以ACI 318-14為基準,提出建議之修正公式,其中劈裂指數上限值部分放寬至本研究所配置之3.70進行計算。旋楞鋼管與鋼筋之直接拉拔試驗結果顯示,配置旋楞鋼管試體所能發揮之握裹強度普遍能夠與未配置旋楞鋼管試體相同,認為在這樣的試驗配置下搭配本研究所使用之旋楞鋼管類型,能夠有效將鋼筋之握裹應力傳遞至旋楞鋼管上。


According to the researches, done in Taiwan, on the bond behavior of threaded bars in reinforced concrete, there is a correlation between the bond performance, the rib height and rib spacing ratio, the compressive strength of concrete, the thickness of the protective coatings, and the placement of stirrups. The rib height and rib spacing ratio, however, has an even more direct impact on the bond performance. ACI Committee 408 also advises that the rib height and rib spacing ratio of deformed bars should lie between 0.1 and 0.14.
This study aims to discuss the bond performance of deformed bars in reinforced concrete through twenty sets of beam end tests adopting rebars and concrete, and the strengths of which are 420 MPa and 42 MPa respectively. The variable factors of this study are the rib height and rib spacing ratio and the spacing in the placement of the stirrups. To understand the impact of the altered splitting index on the bond performance of deformed bars, the examination is done with a fixed cb to alter the splitting index by changing Ktr. It is hoped to come up with a Rr of the deformed bars which is within the regulation while providing an advised formula for straight development length of deformed bars. Additionally, the steel corrugated duct used in Precast is put through a bond examination, which involved 36 sets of pull-out tests to mainly discuss whether the bond strength is the same as, if not higher than, the specimens without steel corrugated duct, to ensure of the bond performance of the steel corrugated duct used in Precast. The main variable parameters are the diameters of the rebars and steel corrugated duct while the strength of the concrete paired with the specimens, the strength of the cement mortar the strength of rebars are respectively 80 MPa, 120 MPa, and 490 MPa.
The results of this research indicate that when the splitting index is over the regulated rate of 2.5, the failure mode remains a splitting failure, and the bond performance inclines as the splitting index. Therefore, the limits of the splitting index should be expanded accordingly to situate the bond performance of the deformed bars. The rib height and rib spacing ratio, however, is a crucial element whose impact increases as the transverse reinforcement increases. According to the regression analysis, the rib height and rib spacing ratio of deformed bars should be no less than 0.087 in order to better fit the requirement of the ACI 318-14 regulation. This study is based on ACI 318-14 to provide a revised formula.

目錄 摘要 I ABSTRACT III 致謝 V 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目的 3 1.4 研究方法 3 1.5 論文架構 4 第二章 文獻回顧 5 2.1 鋼筋混凝土之握裹應力 5 2.2 影響握裹性能之因素 7 2.2.1 混凝土性質 7 2.2.2 鋼筋性質 8 2.2.3 圍束程度 14 2.2.3 受力機制 16 2.3 鋼筋直線伸展長度模型 17 2.3.1 Orangun, Jirsa and Breen (1977) 17 2.3.2 Zuo and Darwin (2000) 19 2.3.3 ACI 408R-03 (2003) 20 2.3.4 NZS 3101-06 規範 (2006) 21 2.3.5 AIJ 2010 規範 (2010) 22 2.3.6 ACI 318-14 (2014) 23 2.4 螺紋節鋼筋於鋼筋混凝土之握裹行為研究 25 2.5 柱梁接合部のシース管内通し主筋の付着性状確認実験 29 第三章 梁構件鋼筋握裹試驗計畫 31 3.1 試體設計 31 3.2 試體製作 46 3.2.1應變計黏貼 46 3.2.2試體澆置 47 3.3 試驗構架及儀器 48 3.3.1 試驗流程 48 3.3.2 試驗系統 49 3.3.3 量測系統 50 3.4 試驗過程 53 第四章 鋼筋與旋楞鋼管直線拉拔握裹試驗計畫 74 4.1 試體設計 74 4.2 試體製作 76 4.3 試驗構架及儀器 77 4.3.1 試驗流程 77 4.3.2 試驗系統 77 4.3.3 量測系統 78 4.4 試驗過程 79 第五章 試驗結果 91 5.1 梁端偏心拉拔試驗 91 5.1.1 試體破壞模式 92 5.1.2 鋼筋應力分析 94 5.1.3 力量滑移曲線 96 5.1.4 直線伸展長度模型比較 99 5.1.5 鋼筋表面幾何尺寸之影響 104 5.1.6 橫向鋼筋圍束指數 110 5.1.7 混凝土保護層指數 112 5.1.8 劈裂指數 114 5.1.9 竹節鋼筋直線伸展長度建議公式 116 5.2 鋼筋與旋楞鋼管直接拉拔試驗 119 5.2.1 試體破壞模式 119 5.2.2 握裹效益比分析 120 5.2.3 鋼筋尺寸尺寸對握裹應力之影響 121 5.2.4 旋楞鋼管尺寸對握裹強度之影響 121 第六章 鋼筋握裹試驗資料庫 124 6.1 資料庫資料蒐集 124 6.2 資料庫分析 161 6.2.1 試驗方式 161 6.2.2 鋼筋表面幾何尺寸 162 6.2.3 混凝土保護層指數 163 6.2.4 劈裂指數 164 6.2.5 鋼筋降伏強度 166 第七章 結論與建議 167 7.1 結論 167 7.2 建議 168 參考文獻 169 附錄A 174

[1]紀凱甯;林克強;邱建國,「螺紋節鋼筋直線伸展握裹研究」,中國土木水利工程學刊,2018,30.3: 171-179。
[2]中華民國國家標準規範(CNS),ICS 77.140.60,「鋼筋混凝土用鋼筋」,總號:560,類號:A2006。
[3]杉本訓祥;増田安彦;江戸宏彰,「柱梁接合部のシース管内通し主筋の付着性状確認実験」,コンクリート工学年次論文集,V. 26.2,2004,pp. 817-822。
[4] Kai-Ning Chi, Chien-Kuo Chiu, and Ker-Chun Lin, “Study on straight development length of tensile threaded bars in high-strength reinforced concrete members”, Construction and Building Materials, Sep,2018, Volume 183:661-674.
[5] Thompson, M. K., “The Anchorage Behavior of Headed Reinforcement in CCT Nodes and Lap Splices,” PhD dissertation, University of Texas at Austin, Austin, TX, 2002, 502 pp.
[6] Goto, Y., “Cracks Formed in Concrete Around Deformed Tension Bars,” ACI Journal, Proceedings V. 68, No. 4, Apr., 1971, pp. 244-251.
[7] Metelli G., Plizzari G., “Influence of the relative rib area on bond behaviour.” Magazine of Concrete Research. Vol.66:6, 2014, pp. 277-294.
[8] Abrams, D. A., “Tests of Bond between Concrete and Steel,” Bulletin No. 71, Engineering Experiment Station, University of Illinois, Urbana, Ill., 1913, 105 pp.
[9] Clark, A. P., “Comparative Bond Efficiency of Deformed Concrete Reinforcing Bars,” ACI Journal, Proceedings V. 43, No. 4, Dec., 1946, pp. 381-400.
[10] Clark, A. P., “Bond of Concrete Reinforcing Bars,” ACI Journal, Proceedings V. 46, No. 3, Nov., 1950, pp. 161-184.
[11] Losberg, A., and Olsson, P.-A., “Bond Failure of Deformed Reinforcing Bars Based on the Longitudinal Splitting Effect of the Bars,” ACI Journal, Proceedings V. 76, No. 1, Jan., 1979, pp. 5-18.
[12] Soretz, S., and Holzenbein, H., “Influence of Rib Dimensions of Reinforcing Bars on Bond and Bendability,” ACI Journal, Proceedings V. 76, No. 1, Jan., 1979, pp. 111-127.
[13] Darwin, D., and Graham, E. K., “Effect of Deformation Height and Spacing on Bond Strength of Reinforcing Bars,” SL Report 93-1, University of Kansas Center for Research, Lawrence, Kans., Jan., 1993, 68 pp.
[14] ACI Committee 408, “Bond and Development of Straight Reinforcing Bars in Tension,” American Concrete Institute (ACI), Farmington Hills, Mich., 2003.
[15] Orangun, C. O., Jirsa, J. O., and Breen, J. E., “Reevaluation of Test Data on Development Length and Splices,” ACI Journal, Proceedings V. 74, No. 3, Mar., 1977, pp. 114-122.
[16] Zuo, J., and Darwin, D., “Splice Strength of Conventional and High Relative Rib Area Bars in Normal and High-Strength Concrete,” ACI Structural Journal, V. 97, No. 4, July-Aug., 2000, pp. 630-641.
[17] Darwin, D., Tholen, M. L., Idun, E. K., and Zuo, J., “Splice Strength of High Relative Rib Area Reinforcing Bars,” ACI Structural Journal, V. 93, No. 1, Jan.-Feb., 1996a, pp. 95-107.
[18] Standards Association of New Zealand, “NZS 3101: New Zealand Concrete Structures Standard, Part 1- the Design of Concrete Structures, Part 2- Commentary on the Design of Concrete Structures, ” New Zealand, 2006.
[19] AIJ 2010, “Standard for Structural Calculation of Reinforced Concrete Structures,” Architectural Institute of Japan, Tokyo, 2010.
[20] ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14),” American Concrete Institute (ACI), Farmington Hills, Mich., 2014.
[21] X.B. Song, Y.J. Wu, X.L. Gu, “Bond behaviour of reinforcing steel bars in early age concrete”, Construction and Building Materials, 2015, 209–217.
[22] Guohua Xing, et al. "Experimental study on bond behavior between plain reinforcing bars and concrete." Advances in Materials Science and Engineering, 2015, 9 pp.
[23] SILVA FILHO, L. C .P. ; VALE SILVA, B. ; DAL BOSCO, V. I. ; GOMES, L. E. S. ; BARBOSA, M.P. ; LORRAIN, M. S. “Analysis of the influence of rebar geometry variations on bonding strength in the pull-out test.” Bond in Concrete 2012 - Bond, Anchorage, Detailing. Fourth International Symposiumn BIC/FIB, Brescia, Italy, 2012
[24] S. Chowdhury, “Early age bond strength of reinforcing bars in high strength concrete.”, Proceedings of 4th International Conference on Structural Engineering and Construction Management., 2013.
[25] Bazant, Zdenék P., and Siddik Sener. "Size effect in pullout tests." ACI Materials Journal, 1988, pp. 347-351.
[26] Bamonte PF and Gambarova PG, “High-bond in NSC and HSC: a study on size effect and on the local bond stress–slip law.” Journal of Structural Engineering, 2007, ASCE 133(2): 225-234.
[27] Hughes BP, Videla C. “Design criteria for early-age bond strength in reinforced concrete.”, Materials and Structures, 1992, 25(152):445–63.
[28] M. N. S. Hadi, “Bond of High Strength Concrete with High Strength Reinforcing Steel.”, no. 3, pp. 143-147, 2008
[29] Akira Yasojima and Toshiyuki Kanakubo, "Local Bond Splitting Behavior of RC Members with Lateral Reinforcement." 14th World Conference on Earthquake Engineering, Conference Proceedings. 2008.
[30] Darwin, D., and Graham, E. K., “Effect of Deformation Height and Spacing on Bond Strength of Reinforcing Bars,” ACI Structural Journal, V. 90, No. 6, Nov.-Dec., 1993, pp. 646-657.
[31] GH Hong, DU Choi, OC Choi, GS Hong. “An Experimental Study on Bond Strength of High-Strength Reinforcing Bars with High Relative Rib Area.” Journal of the Korea Concrete Institiue. Vol.17, No3, pp.375~384, June, 2005
[32] Mathey, Robert G., and Watstein, David, "Investigation of Bond in Beam and Pull Out Specimens with High-Yield-Strength Deformed Bars," ACI Journal, Proceedings V. 57, No. 9, Mar. 1961, pp. 1071-1090.
[33] LI Hai-tao, SU Xiao-zu, DEEKS A J. “Evaluation of the adequacy of development length requirements for 500 MPa reinforcing bars.” Advances in Structural Engineering, 2011, 14(3): 367-378.
[34] Chinn, James; Ferguson, Phil M.; and Thompson, J. Neils, "Lapped Splices in Reinforced Concrete Beams." ACI Journal, Proceedings V. 52, No. 2, Oct. 1955, pp.201-214.
[35] Hwang, Shyh-Jiann, Yih-Ren Leu, and Han-Lin Hwang. "Tensile bond strengths of deformed bars of high-strength concrete." Structural Journal 93.1, 1996, pp. 11-20.
[36] 紀凱甯、尹衍梁、林克強、邱建國、顏聖益、吳子良,「鋼筋混凝土之竹節鋼筋受砂漿附著汙染之握裹行為研究」,中華民國第十二屆結構工程研討會暨第二屆地震工程研討會,第1516篇,民國一百零三年八月。
[37] M. H. Mazumder, R. I. Gilbert, and Z-T. Chang,“A reassessment of the analysis provisions for bond and anchorage length of deformed reinforcing bars in tension.” Bonfring Interantional Journal of Industrial Engineering and Management Science, Vol. 2, Issue 4, pp. 01-08, 2012
[38] Seliem, Hatem M., et al. "Bond characteristics of ASTM A1035 steel reinforcing bars." ACI Structural Journal 106.4 (2009): 530.
[39] Harajli, M. H. "Comparison of bond strength of steel bars in normal-and high-strength concrete." Journal of materials in Civil Engineering 16.4 (2004): 365-374.
[40] Turk, Kazim, and M. Sukru Yildirim. "Bond strength of reinforcement in splices in beams." Structural Engineering and Mechanics 16.4 (2003): 469-478.
[41] Azizinamini, A; Chisala, M.; and Ghosh, S. K., “Tension Development Length of Reinforcing Bars Embedded in High-Strength Concrete,” Engineering Structures, 1995.
[42] Hamad, Bilaal S., and James O. Jirsa. "Strength of epoxy-coated reinforcing bar splices confined with transverse reinforcement." Structural Journal 90.1 (1993): 77-88.
[43] Choi, Oan Chul, et al. "Bond of epoxy-coated reinforcement: bar parameters." American Concrete Institute, 1991.
[44] Zekany, A. J., et al. The Influence of Shear on Lapped Splices in Reinforced Concrete. No. FHWA/TX-81/20+ 242-2 Intrm Rpt.. 1981.
[45] Thompson, M. A., Jirsa, J. O., Breen, J. E., and Meinheit, D. F., “The Behavior of Multiple Lap Splices in Wide Sections,” Research Report No. 154-1, Center for Highway Research, University of Texas at Austin, Tex., Feb., 1975, 75 pp

無法下載圖示 全文公開日期 2024/08/22 (校內網路)
全文公開日期 2024/08/22 (校外網路)
全文公開日期 2024/08/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE